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The set of equilibria is identical under the SC and
the PF models. Moreover, each firm’s equilibrium ser-
vice level in any such equilibrium is uniquely deter-
mined as a function of that firm’s characteristics only,
and it is a dominant choice for this firm, i.e., with
fixed prices, the equilibrium service level is the firm’s
optimal choice, regardless of what service levels are
adopted by its competitors. In contrast, the equilib-
rium in the SF model differs from that in the other two
competition models. Here, a firm’s equilibrium service
level does depend, in general, on the characteristics of
the competitors. Assuming the SF model has a unique
equilibrium, we derive a simple sufficient condition
under which each firm adopts a higher price and a
higher service level while enjoying a higher demand vol-
ume, compared to the other types of competition. In
the presence of multiple equilibria, the same uniform
ranking applies to the componentwise-smallest equi-

libria. Thus, if firms choose and announce their service
levels before choosing their price, this will result in
higher but more expensive service by all competitors.
Because all firms’ demand volumes increase as well,
this type of competition appears to benefit the con-
sumer. It also suggests that value is added to the con-
sumer when government agencies, industry consortia,
or independent organizations periodically report on
service levels.
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1. Introduction
Long development, procurement, and production
leadtimes resulting in part from a widespread reliance
on overseas suppliers have traditionally constrained
fashion retailers to make supply and assortment deci-
sions well in advance of the selling season, when
only limited and uncertain demand information is
available. With little ability to modify product assort-
ments and order quantities after the season starts
and demand forecasts can be refined, many retail-
ers are seemingly cursed with simultaneously missing
sales for want of popular products, while having to
use markdowns in order to sell the many unpopular
products still accumulating in their stores (see Fisher
et al. 2000).

Recently, however, a few innovative firms, including
Spain-based Zara, Mango, and Japan-based World Co.
(sometimes referred to as “fast-fashion” companies),
have gone substantially further, implementing prod-
uct development processes and supply chain architec-
tures that allow them to make most product design
and assortment decisions during the selling season.
Remarkably, their higher flexibility and responsive-
ness is partly achieved through an increased reliance
on more costly local production relative to the supply
networks of more traditional retailers.
At the operational level, leveraging the ability to

introduce and test new products once the season
has started motivates a new and important decision
problem, which seems key to the success of these
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fast-fashion companies: Given the constantly evolv-
ing demand information available, which products
should be included in the assortment at each point in
time?
The problem just described seems challenging, in

part because it relates to the classical trade-off known
as exploration versus exploitation: In each period
the retailer must choose between including prod-
ucts in the assortment that he has a “good sense”
are profitable (exploitation) or products for which
he would like to gather more demand information
(exploration). That is, he must decide between being
“greedy” based on his current information or trying
to learn more about product demand (which might
be more profitable in the future). In that respect,
the dynamic assortment problem can be seen as
a variant of the multiarmed bandit problem with
finite horizon and several plays per stage. Each
arm represents a product, and pulling an arm is
equivalent to including the respective product in the
assortment.

2. Model Definition
2.1. Supply and Demand
Consider a retailer selling products in a store dur-
ing a limited selling season. The set of all products
that the retailer may potentially sell is denoted by
� = �1�2� � � � � S�; this set includes both the products
already available when the season starts and all the
variants and new products that may be designed dur-
ing the season. The net margin rs of product s ∈ �
is assumed to be exogenously given, positive, and
constant. We assume that the selling season can be
divided into T periods and that at the beginning of
each of these periods the product assortment in the
store may be revised; time is counted backward and
denoted by the index t.
The store’s limited shelf space is captured by the

constraint that the assortment in each period may in-
clude at most N different products out of the S avail-
able; we are thus implicitly assuming that all prod-
ucts require the same shelf space. We also assume a
perfect inventory replenishment process during each
assortment period, so that there are no stockouts
or lost sales. Consequently, in our model, realized
sales equal total demand, and for each product we

focus on assortment inclusion or exclusion as opposed
to order quantity. Holding costs are ignored in our
formulation.
The demand for each product in the assortment

is exogenous and stationary, but stochastic, and we
do not capture substitution effects. Specifically, we
assume that customers willing to buy one unit of each
product s in the assortment arrive at the store accord-
ing to a Poisson process with an unknown but con-
stant rate 6s . That is, the underlying arrival rate 6s

is assumed to remain constant throughout the entire
season, but the resulting actual demand for product s

may only be observed in the periods when that prod-
uct is included in the assortment. In addition, the
arrival processes corresponding to different products
are assumed to be independent.
We adopt a standard Gamma-Poisson Bayesian

learning mechanism. The underlying demand rate 6s

for each product s is initially unknown to the retailer;
however, he starts each period with a prior belief
on the value of that parameter represented by a
Gamma distribution with shape parameter ms and
scale parameter �s (ms and �s must be positive, andms

is assumed to be integer). Redefining time units if nec-
essary, we can assume with no loss of generality that
the length of each assortment period is 1; the predic-
tive demand distribution under that belief for product
s in the upcoming period is then given by a negative
binomial distribution with parameters ms and �s
�s +
1−1. If now product s is included in the assortment
and ns actual sales are observed in that period, it fol-
lows from Bayes’s rule that the posterior distribution
of 6s has a Gamma distribution with shape parameter

ms +ns and scale parameter 
�s + 1.
2.2. Dynamic Programming Formulation
Given the discrete and sequential character of our
problem, the natural solution approach is dynamic
programming (DP); the state at time t is given in
our model by the parameter vector It = 
m��, which
summarizes all relevant information, including past
assortments and observed sales. For ease of notation,
we omit the dependence of m and � on t. In each
period, the decision to include product s in the assort-
ment or not can be represented by a binary vari-
able us ∈ �0�1�, where us = 1 means that product s is
included.
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The optimal profit-to-go function J ∗t 
m�� given
state 
m�� and t remaining periods must then satisfy
the following Bellman equation:

J ∗t 
m�� = max
u∈�0�1�S �∑S
s=1 us≤N

S∑
s=1

rs

ms

�s

us

+ Ɛn9J
∗
t−1
m+n ·u��+u:�

where v · u represents the componentwise product of
two vectors, and the terminal condition is J ∗0 
m��= 0
for all states.
Note that the only link between consecutive peri-

ods in this model is the information acquired about
demand, and that different products are only coupled
at a given period through the shelf space constraint∑S

s=1 us ≤N ; this type of problem is known as a weakly
coupled DP.

3. Analysis
3.1. The Dual Dynamic Program
The analysis of the model is based on Lagrangian
relaxation and the decomposition of weakly coupled
dynamic programs (see, for instance, Bertsimas and
Mersereau 2004 and the references therein). Specifi-
cally, we relax the shelf space constraint, which leads
to the definition of dual policies that can be shown
to be useful in finding near-optimal primal policies
and upper bounds for the optimal profit-to-go. Let
�t
m�� denote any function associated with period t

that maps the state space into the set of nonnegative
real values; we define a dual policy to be a vector of
functions �t = 
�t
·��t−1
·� � � � ��1
·.
For any dual policy �t and any initial state 
m��,

the corresponding profit-to-go is obtained by solving
the dual dynamic program given by:

H
�t
t 
m�� = N�t
m��

+ max
u∈�0�1�S

S∑
s=1

(
rs

ms

�s

−�t
m��
)
us

+ Ɛn9H
�t−1
t−1 
m+n ·u��+u:�

with H
�0
0 
m��= 0 ∀ 
m��.

In words, a dual policy gives the price of a unit of
shelf space for each period and each possible state. As
expected, weak duality holds, and for any dual policy
and initial state we have that J ∗t 
m�� ≤ H

�t
t 
m��.

By considering open-loop dual policies (i.e., a constant

shadow price per period), one can calculate an upper
bound for J ∗t 
m�� using standard convex nondiffer-
entiable optimization methods.

3.2. The Index Policy
It is well known that index policies are not opti-
mal for our version of the multiarmed bandit prob-
lem (see Berry and Fristedt 1985), however they are
still appealing given their simple structure. Through
a sequence of intuitive approximations to the dual DP
we derive a heuristic index policy for the dynamic
assortment problem. The suggested rule is to include
the N products with the highest indices in the assort-
ment, where the index for product s at period t is
given by the following formula:

<t�s ≈ rsƐ96s:+ zt

rs� 96s:√
� 96s:+ Ɛ96s:

� (1)

The factor zt is the unique solution to the equation

t − 1 · =
zt = zt , where =
z = ∫ �

z

x − z>
xdx is

the loss function of a standard normal. The values
zt , which are independent of the problem data, are
increasing and concave in t.
The index <t�s represents the highest price at which

one should be willing to rent some shelf space to dis-
play (and sell) product s there; it is thus a measure
of the desirability of including each individual prod-
uct in the assortment, and from that standpoint the
rationale behind the suggested index policy is to fill
all shelf space with the most desirable products. Note
that the first term in the index expression (1) favors
exploitation, and the second term favors exploration
because it is increasing in both the variance of 6s and
the number of remaining periods (through zt). Intu-
itively, when uncertainty about demand for a prod-
uct s (captured by � 96s:) is high, there is more benefit
to learn from including s in the assortment because
of the upside potential from future sales. However,
one should increasingly favor exploitation over explo-
ration as the remaining planning horizon (and oppor-
tunity for leveraging exploration) shortens, which is
captured by the decrease with t of the multiplicative
factor zt . The summation of a variance and an expec-
tation in the second term of (1) is not a mistake, but
rather a consequence of the period length being equal
to 1.
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Finally, when assessing the performance of the
index policy defined above, our primary benchmark
is the greedy policy, which consists of selecting in each
period the N products with the highest immediate
expected profit rsƐ96s:. Note that the greedy policy still
involves learning despite its myopic nature, but the
impact of assortment decisions on future learning is
ignored. As a result, several authors also refer to it as
passive learning.

4. Conclusions
We have developed a discrete-time DP model for the
dynamic assortment problem faced by a fast-fashion
retailer refining his estimate of consumer demand
for his products over time. The main assumptions
made were: (i) independent products, (ii) no lost sales,
(iii) constant demand rates, and (iv) immediate assort-
ment implementation. Under these assumptions, we
have formulated this problem as a multiarmed ban-
dit with finite horizon and multiple plays per stage.
Using the Lagrangian decomposition of weakly cou-
pled DPs, we have derived a closed-form index policy
and we have derived an upper bound for the optimal
profit-to-go, which allows us to assess the suboptimal-
ity gap of the suggested policy.

A simulation study indicates that the index policy
always performs at least as well as the greedy policy
(or passive learning), and significantly outperforms it
in scenarios with diffuse or biased prior demand infor-
mation. Also, numerical computations of the bound
mentioned above suggest that the index policy is close
to optimal. In general, the improvement of the sug-
gested index policy on the greedy rule increases with
the planning horizon length and the variance of the
initial priors.
Although the major assumptions of our model

may be particularly strong in some environments,
our approach was partly motivated by the belief
that the closed-form policy that they allow to derive
constitutes a useful starting point for designing
heuristics or developing extensions in more complex
environments.
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Firms often establish supply chain relationships
through contracts that provide rules for interac-

tion. These contracts help align incentives for decision
making and establish how partners will share both
the benefits of interaction and the risks from uncertain
supply or demand. We propose a new multiperiod
contract form, the promised leadtime contract. The

contract reduces supplier risk from future demand
uncertainty, and it eliminates buyer risk from uncer-
tain inventory availability. The supplier agrees to ship
buyer orders in full after a promised leadtime, and the
buyer pays the supplier for this privilege. The sup-
plier and buyer may each carry inventory, depending
on the agreed on promised leadtime and their respec-


