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We propose an extension of the competitive newsvendor model to investigate the impact of quick response
under competition. For this purpose, we consider two retailers that compete in terms of inventory: cus-

tomers that face a stockout at their first-choice store will look for the product at the other store. Consequently,
the total demand that each retailer faces depends on the competitor’s inventory level. We allow for asymmetric
reordering capabilities, and we are particularly interested in the case when one of the firms has a lower ordering
cost but can only produce at the beginning of the selling season, whereas the second firm has higher costs but
can replenish stock in a quick response manner, taking advantage of any incremental knowledge about demand
(if it is available). We visualize this problem as the competition between a traditional make-to-stock retailer that
builds up inventory before the season starts versus a retailer with a responsive supply chain that can react to
early demand information. We provide conditions for this game to have a unique pure-strategy subgame-perfect
equilibrium, which then allows us to perform numerical comparative statics. We confirm that quick response
is more beneficial when demand uncertainty is higher or exhibits a higher correlation over time. We also find
that the competitive advantage from quick response is larger when facing a slow response competitor, and
interestingly, asymmetric competition can be desirable to both competitors.
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1. Introduction
In recent years, the apparel industry has seen the rise
of what has been called fast fashion retailers. These are
clothing companies that are able to respond quickly
to market trends and introduce new products very
frequently. Most of these products have a life cycle
of no more than a few weeks, and by the time the
cycle is over, they are promptly replaced by a more
“fashionable” item.
In Europe, where the concept began, fast fashion has

been denominated a 21st-century retailing phenomenon,
with representative companies such as H&M and the
Inditex Group, owner of Zara (Davidson 2005). A cru-
cial part of their success is due to their flexible supply
chain and operational competencies (Ghemawat and
Nueno 2003). In particular, fast fashion retailers can
make in-season replenishments thanks to remarkably
low lead times, in the order of weeks rather than
months. The latter is achieved in most cases through

local production or expediting, which obviously trans-
lates into higher unit costs.
In the case of North America, fast fashion remains a

niche that represents no more than 2% of the apparel
business (Foroohar 2006). Large clothing retailers like
Gap, Inc., seem too big and might not have the incen-
tives to restructure their entire supply chain to mimic
their European competitors because their customers
have been historically less fashion forward. They
might, however, borrow a few elements of fast fashion.
For example, they can strengthen the link with their
suppliers, or they can move the production of trendier
items to Mexico instead of Asia to shorten lead times.
The extent to which traditional retailers should adopt
or convert to fast fashion remains an open ques-
tion and serves as part of the motivation for this
paper.
Despite the incipient (but growing) success of fast

fashion in North America, the concept itself builds
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upon quick response (QR), which was an apparel
manufacturing initiative that started primarily in the
United States during the mid-1980s (Hammond and
Kelly 1990). The main objective of QR is to drastically
reduce lead times and setup costs to allow the post-
ponement of ordering decisions until right before (or
during) the retail selling season, when better demand
information might be available. A successful imple-
mentation of QR is typically based on the effective use
of information technologies. Fast fashion has taken
QR to a higher level and has leveraged on the mini-
mal lead times by introducing new products on a reg-
ular basis, therefore enabling a dynamic assortment
that basically fulfills the ideal of providing “fashion
on demand.”
The overall success of fast fashion is attributable

to a combination of multiple factors. The interaction
between all the elements involved is at a prelimi-
nary stage of being understood. There has been exten-
sive qualitative work that describes the different cases
or examples of fast fashion companies. However, the
academic literature on this topic remains scarce. In
this paper we aim at understanding the impact of one
specific element of fast fashion. We focus on the QR
component, which is arguably the basis for all the
other elements that later come into play. Therefore,
we disregard assortment, pricing, or market position-
ing decisions related to fast fashion, and we focus
on the essential capability of having more flexibil-
ity in terms of inventory replenishment. We look at
the problem in a competitive setting, because from its
inception, QR advocates have claimed that it is the
only viable strategy under the current conditions in
the apparel market, similar to what just-in-time man-
ufacturing has meant to the auto industry (Hammond
and Kelly 1990).
We consider a model with two retailers selling a

substitutable product over a finite horizon that is
divided into two periods. The two retailers com-
pete through their inventory levels. When a stockout
occurs at one retailer, the unsatisfied customer walks
into the second retailer, where she is served if stock
is available. Thus, the inventory decision of a given
retailer depends on the level of inventory at the com-
petitor. Moreover, in the second period, the retailers
can incorporate new demand information into their

stocking decisions. The model allows for asymmet-
ric retailers that may or may not be able to use the
information updates, depending on their reordering
capabilities. We then analyze the competitive strate-
gies and the equilibrium inventory decisions. Our
model can be seen as a two-period extension of the
competitive newsvendor developed by Lippman and
McCardle (1997). As in their case, we are interested
in determining and characterizing the existence of
a unique pure-strategy subgame-perfect equilibrium.
This allows us to understand and compare the out-
comes for each retailer, and in particular assess the
potential benefits of implementing QR in a competi-
tive setting.
Our paper makes contributions to the operations

literature from both methodological and manage-
rial standpoints. From a methodological perspective,
we solve an asymmetric two-period inventory-based
competition model, where the asymmetry is in terms
of reordering and demand learning capabilities.1 We
are not aware of any other paper that studies hor-
izontal inventory-based competition with demand
correlation over time. Several authors have previ-
ously studied the infinite horizon case but under
such conditions that it reduces to a myopic single-
period problem. On the contrary, we formulate a
two-period model, and we provide sufficient condi-
tions that guarantee the existence of a unique equilib-
rium in pure strategies. The conditions for different
cases are summarized in Table 1, and the meaning
of each assumption is discussed later. Note that we
focus on the two-period case because it is the most
common approach that has been used in the literature
to model QR (see, for instance, §10.4 in Cachon and
Terwiesch 2005).2

From a managerial standpoint, this paper is a first
attempt at understanding the competitive advantage
of QR compared to more traditional retail opera-
tions. In particular, we provide a detailed numeri-
cal study where we compute the equilibrium profits
achieved by two slow response (SR) firms engaged in

1 Asymmetric net margins and demand-splitting functions are also
allowed.
2 The symmetric case allows for an arbitrary number of periods and
is analyzed in §A of the online appendix available on the authors’
website.
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Table 1 Sufficient Conditions for a Unique Pure-Strategy
Subgame-Perfect Equilibrium

Case

Demand Midseason Symmetric
Assumption signal replenishment retailers

Costs and prices Different costs Nondecreasing and —
per period nonincreasing

respectively

Infinite support — Only in initial period —
Log-concavity — Only in initial period —

Demand
Independence — �D2 − kD1� independent —

of D1 for some k ≥ 0
Likelihood order — Nondecreasing —

Linear split — Only in last period In all periods
if k > 0

Note. The symmetric case is studied in the online appendix.

inventory-based competition, and we compare it to
those achieved when one or both retailers have QR
capabilities. Our results indicate that both retailers
are better off in the QR versus SR competition (Q-S)
compared to the SR versus SR case (S-S). In other
words, we show that part of the competitive advan-
tage of a QR retailer comes from the asymmetry, i.e.,
from being faster than the competitor. These benefits
are larger under higher demand uncertainty or higher
correlation over time. We also observe that the QR
firm might be willing to let demand leak to reduce
inventory risk.
The remainder of the paper has the following

structure. In §2 we review the existing literature,
mostly on inventory-based competition models. Then,
in §3 we develop our model, and in §4 we estab-
lish the existence and uniqueness of a pure-strategy
subgame-perfect equilibrium for the demand signal
and midseason replenishment cases. In §5 we study
the equilibrium under different scenarios and focus
on the role of cost asymmetries, demand variability,
and correlation. Finally, in §6 we conclude and dis-
cuss future research directions. There is an electronic
companion to this paper where we provide the essen-
tial proofs. In a separate online appendix (available on
the authors’ website) we provide supplemental results
and the remaining analytical proofs not included in
the electronic companion.

2. Literature Review
Fast fashion has been discussed extensively in the
popular press; see, for instance, Foroohar (2006). In
more academic terms, the literature is mostly descrip-
tive with an emphasis on the qualitative aspects of
the retailing strategy. Many cases have been writ-
ten, in particular for the Spanish company Zara (e.g.,
Ghemawat and Nueno 2003, McAfee et al. 2004,
Ferdows et al. 2004). From a quantitative perspective,
during the 1990s significant progress was made in
understanding the impact of QR in an isolated sup-
ply chain, mostly in a two-period setting (see Fisher
and Raman 1996, Iyer and Bergen 1997, and refer-
ences therein). More recently, Cachon and Swinney
(2009) looked at QR in the presence of strategic cus-
tomers. All this work is related to ours because we
focus on the QR aspect of fast fashion. However, as
mentioned before, fast fashion goes beyond QR, in
particular by introducing a large number of new prod-
ucts during the retail selling season. In that respect,
Caro and Gallien (2007) provide a closed-form policy
for one of the distinctive operational challenges faced
by fast fashion firms, namely, the dynamic assortment
problem.
To the best of our knowledge, there has not been

much analytical work that tries to identify the drivers
of fast fashion’s success in a competitive context.
Clearly, the answer is not simple, because there are
many interconnected factors that come into play. For
that reason, as a first attempt to understand the (poten-
tial) competitive advantage, in this paper we focus
exclusively on the QR capability, and we openly dis-
regard other important elements of fast fashion. With
this scope in mind, we are left with an inventory-
based competition problem for substitutable products.
Several models have been developed in the literature
for this problem. In Table 2 we provide a noncom-
prehensive summary of preceding work. The key fea-
ture that all these papers have in common is that
unmet demand at one firm is reallocated completely or
partially among the competitors (i.e., unmet demand
spills over to the competition). Our paper contributes
to this stream of research by solving a two-period
model that allows for asymmetric retailers in terms of
reordering and demand learning capabilities.
In the single-period case with N retailers, Lippman

and McCardle (1997) prove the existence of a pure
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Nash equilibrium under the general assumption that
the effective demand faced by a particular firm is
stochastically decreasing in the inventory levels of the
other firms, which comes naturally in the case of sub-
stitutable products (see Netessine and Zhang 2005).
The existence of a unique Nash equilibrium requires
additional assumptions as those listed in the last col-
umn of Table 2.
In the infinite horizon case, several authors have

shown that, under suitable conditions, there exists
a Nash equilibrium in which each retailer follows
a stationary base-stock policy. All these results stem
from the dynamic oligopoly model by Kirman and
Sobel (1974). In practice, this is equivalent to solving
a single-period problem. Note that even if the latter
has a unique Nash equilibrium, that does not guar-
antee a unique subgame-perfect equilibrium in the
multiperiod case.
Several other (retailing) competition models in

which inventories play an important role have been
studied in the literature. For instance, in an infi-
nite horizon setting, Li (1992) looks at delivery-time
competition and shows that when all retailers are
identical they tend to make to stock. Anupindi and
Bassok (1999) consider inventory-based competition
à la Parlar (1988) and study the impact of “market
search” (i.e., the spillover fraction) on the manufac-
turer’s profit. Bernstein and Federgruen (2004) exam-
ine the case of retailers that compete on price and
then set their inventory levels accordingly. Gaur and
Park (2007) consider customers sensitive to negative
experiences such as a stockout and study the compe-
tition of retailers on the basis of their service levels.
As before, given the stationary model formulation in
these papers, the solution is myopic in the sense of
Sobel (1981), and the analysis reduces to a single-
period problem.
Given the extremely short life cycle of fashionable

clothing, finite-horizon models seem more appropri-
ate. In that matter, the work by Hall and Porteus
(2000) is conceptually close to ours because, despite
the fact that they consider competition based on cus-
tomer service instead of (nonperishable) inventory,
and information updates are not allowed, the retailers
can only take actions to prevent leakage of demand to
the competitor rather than proactively attract demand
to themselves. Under these conditions together with a

multiplicative demand model, they are able to show
the existence of a unique subgame-perfect equilib-
rium. Liu et al. (2007) extend the result to a more
general demand model. Olsen and Parker (2008) pro-
vide an alternative extension in which a retailer can
hold inventory over time and can advertise to attract
dissatisfied customers from its competitor’s market.
The existence of a unique equilibrium is guaranteed
by assuming a particular salvage value function and
low initial inventory levels (as in Avsar and Baykal-
Gürsoy 2002). Interestingly, in equilibrium, the game
effectively becomes two parallel Markov decision pro-
cesses where each firm can make its stocking decision
independently of the other firm’s choices. We obtain a
similar result for the case of two symmetric retailers,
although under a different set of assumptions.

3. A Two-Period Inventory
Competition Model

In this section we formulate the inventory competi-
tion model that will be used later to study the bene-
fits of QR. In §3.1 we present the basic features and
assumptions. Then, in §3.2, we introduce the sequen-
tial game and the solution approach (i.e., subgame
perfection).

3.1. Basic Features and Assumptions
In what follows, we present the assumptions that lead
to our inventory competition model with an explana-
tion or discussion whenever appropriate. Any related
notation is introduced as well.

Assumption 1. There are only two firms that sell sub-
stitute products, and each firm maximizes the total expected
profits over a finite horizon divided into two periods.

Let index i = 1�2 denote the retailers. When nec-
essary, we use the index j to denote the competitor,
and throughout the paper it is understood that i �= j .
Because the retailers sell perfect substitutes, a cus-
tomer that cannot find the product at her preferred
retailer will check if it is available at the competitor.
We consider a finite horizon to represent the short
product life cycle in the fashion apparel industry. Fol-
lowing the QR literature, we focus on the two-period
case, T = 2, which is rich enough to capture the key
features that come into play. We use the index t to
denote a period, with t = 1 and t = 2 representing the
first/initial and second/final period, respectively.
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Assumption 2. The aggregate customer demand in
period t = 1�2 (denoted Dt) is continuous, stochastic, and
may be correlated across periods.

Let ft and Ft be the probability density function
(p.d.f.) and cumulative distribution function (c.d.f.) of
the demand in period t, respectively. Let �Ft ≡ 1 − Ft
with �F −1

t its inverse. When there is demand correla-
tion across periods, we denote the p.d.f. and c.d.f. of
the demand in period 2 as f2 � I2 and F2 � I2 , respectively,
where I2 is the demand information available at the
beginning of the second period, which is assumed
to be common knowledge. Typically, the information
would be the previous demand realization D1 and/or
any data or demand signal that has become avail-
able. An important remark is that we do not allow
the information I2 to be a function of past decisions.
In other words, information is uncensored, just as in
most QR models.

Assumption 3. In period t = 1�2, the effective demand
faced by retailer i is composed of two parts: (i) the original
demand and (ii) the spillover demand. The original demand
is expressed as qit �Dt
, where qit is the demand allocation
function (also referred to as the demand-splitting function),
which is assumed to be strictly increasing, and we have
that Dt = qit �Dt
+ qjt �Dt
.3

The original demand is made of customers that nat-
urally choose retailer i over the competitor j , and the
spillover demand is made of those customers that
originally choose j but end up buying at i because j
runs out of stock. This spillover demand is equal to

max�0� qjt �Dt
− yjt �� (1)

where yjt is firm j’s inventory level (after replen-
ishment) in period t. Then the effective (realized)
demand faced by retailer i is given by Rit�y

j
t 
≡ qit �Dt
+

max�0� qjt �Dt
− y
j
t �. Because this is a key assumption

in our model, several important observations follow:
• The effective demand Rit�y

j
t 
 depends only on the

competitor’s inventory level. Therefore, competition
is based on the inventory levels, but retailer i can only
limit the customers it loses rather than influence those
it gains. In an authentic fast fashion setting, a retailer

3 In the demand signal case studied in §4.2.1, because there is no
demand realization in the first period, we let qi1 = 0 for i= 1�2.

would typically attract more demand by sustaining
a high assortment rotation. Our model does not con-
sider such a feature because we focus on understand-
ing the impact of the QR capability for one particular
product. We also note that, except for Netessine et al.
(2006), all of the papers mentioned in Table 2 consider
competitive models in which the retailer can only pre-
vent leakage rather than attract additional demand.
The same happens in Hall and Porteus (2000) and Liu
et al. (2007).
• In Parlar (1988) and other similar papers, inde-

pendent firm demands are aggregated into industry
demand. On the contrary, in Lippman and McCardle
(1997) and follow-up work, aggregate industry de-
mand is allocated across firms. If the allocation is
deterministic, then in each period there is only one
source of uncertainty, namely, the total demand Dt . We
have followed the latter, and therefore our approach is
most appropriate when the main source of uncertainty
is the size of the market (i.e., how well a product will
sell) rather than the initial allocation across retailers. It
is worth noting that our results can be extended to the
case when the original allocation in the second period
depends on the demand information I2.
• As in the proof of uniqueness by Lippman and

McCardle (1997), we require the demand-splitting
function qit to be strictly increasing in Dt . It must be
strictly monotone because we need the inverse �qit 


−1

to be well defined, and it must be increasing because
our analysis requires that once the stocking decisions
have been made, the retailer that runs out of stock first
is the same one under all possible demand scenarios
(in a given period). These conditions implicitly impose
a positive correlation between the original demands of
both firms. Again, this is reasonable when the main
source of uncertainty is the market size. Note that the
correlation can be anywhere between 0 to 1. It is per-
fect (equal to one) for the linear demand-splitting case,
but can be close to zero as well.4 Some models in
the literature, e.g., Nagarajan and Rajagopalan (2009),
assume a negative correlation between the original

4 Consider the following example: qit �Dt
 = 0 for 0 ≤ Dt ≤ a and
q
j
t �Dt
 = a when a ≤ Dt ≤ 1, and Dt is uniform in �0�1�. Then
Cov�qit �Dt
� q

j
t �Dt

 = a2�1− a
2/4, Var�qit �Dt

 = �1− a
3�1+ 3a
/12,

and Var�qjt �Dt

 = a3�4− 3a
/12. Hence, Corr�qit �Dt
� q
j
t �Dt

 =

3
√
a
√
1− a/�√1+ 3a√1+ 3�1− a

, which is close to 0 for a≈ 0 or

a≈ 1.
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demands of the two firms, which is an appropri-
ate assumption when the retailers are competing for
a fixed pool of customers. Another class of models
assume that the effective demand allocation is propor-
tional to the individual stocking levels (see Cachon
2003). In that case, the retailers face perfectly corre-
lated demands, and a retailer that stocks more will get
a larger share of demand. This goes back to the pre-
vious discussion about the retailer being able to influ-
ence its effective demand but also has the inconve-
nience of making the multiperiod analysis intractable.
• Our model can be directly extended to the case of

imperfect substitution, that is, when only a fraction �
of customers choose to substitute when they face a
stockout. It suffices to multiply Equation (1) by �, and
all the equilibrium results follow through.

Assumption 4. At the beginning of period t = 1�2
both retailers decide simultaneously the order-up-to levels
�yit� y

j
t 
 based on the initial stock levels �xit� x

j
t 
. When there

is demand correlation, the decision in the second period also
depends on the demand information I2.

The status of both retailers at the beginning of
period t = 1�2 is described by the initial stock levels
�xit� x

j
t 
, and when there is demand correlation, the

status of the market in the second period is described
by the demand information I2. In the first period,
the state of the system (i.e., the retailers and the
market) is given by the vector �xi1�x

j
1
. Based on

that state, both retailers decide the order-up-to lev-
els �yi1�y

j
1
. Demand D1 is then realized and depletes

the inventory level of the system down to �xi2�x
j
2
.

Finally, given the information update I2, the retail-
ers may place a second order to bring the inventory
levels up to �yi2�y

j
2
. Therefore, the retailers decide

their actions, i.e., the order-up-to levels �yit� y
j
t 
, con-

tingent on the respective state of the system. In other
words, the retailers play Markovian strategies (see
Fudenberg and Tirole 1991). As seen later in the dis-
cussion after Theorem 2, the analysis of our model
can be restricted to Markovian strategies without any
loss of generality.

Assumption 5. The unit cost and price for retailer i in
period t are constant parameters denoted cit and pit , respec-
tively. The retailers are said to be symmetric if they face
the same cost and price in all periods.

We exclude pricing decisions from the model. This
allows us to focus on the use of inventory as a com-
petitive lever. This assumption is consistent with the
fact that fast fashion retailers rely less on markdowns
(see Ghemawat and Nueno 2003). Note that our def-
inition of symmetry is only on costs and prices. The
firms can differ on any other parameter. Clearly, if
c
j
t ≥ pjt , then retailer j will not order in period t.
Therefore, by choosing the appropriate cost and price
parameters we can model the asymmetric case of two
retailers that have different reordering and demand
learning capabilities. This represents the situation in
which firm j has a lower ordering cost but can only
produce before the selling seasons starts, whereas
retailer i has higher costs but can replenish stock
every period, taking advantage of any incremental
knowledge about demand if it is available.

Assumption 6. We ignore holding and lost sales
penalty costs, and there is no minimum ordering quantity.

Overall, we aim at formulating a parsimonious
model. We omit inventory holding costs, as they are
less relevant for short-life-cycle products. However,
these costs can also be incorporated in the model.5 For
lost sales penalty costs, the revenue function needs
to be redefined, but a similar analysis would go
through.6 On the contrary, the QR problem with mini-
mum ordering quantities lies beyond the scope of this
paper.

Assumption 7. Leftover inventory can be carried over
from the first to the second period and is lost at the end of
the season. If both retailers stockout in a given period, the
unsatisfied demand is lost as well.

The leftover inventory in period t is equal to
�yit −Rit�yjt 

+. A salvage value at the end of the season
could be easily incorporated in the model. Similarly,
a straightforward extension allows for backlogged
demand to be shared between the firms in a deter-
ministic way.

5 To incorporate holding costs, it suffices to redefine pi1, c
i
1, p

i
2, and c

i
2,

as pi1 − hi1 − hi2, ci1 − hi1 − hi2, pi2 − hi2, and ci2 − hi2, respectively, where
hit is the holding cost paid at the end of period t.
6 If one wished to incorporate lost sales penalty costs, one would
subtract the term vitƐ�R

i
t − yit �+ = vitƐ�R

i
t�− vitƐmin�yit �Ri

t� from the
revenue.
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3.2. Subgame-Perfect Strategies
Because the spillover demand depends on the inven-
tory level of the competitor (see Equation (1)), we
must use game-theoretical tools to analyze the replen-
ishment decision, and we proceed by backward
induction (see Fudenberg and Tirole 1991). To be pre-
cise, we begin with the terminal period t = 2 and
then use the latter to establish the outcome in the first
period. We are interested in pure strategies, which
in our two-period game are given by two functions,
one for each period, that dictate the action a firm
plays in any possible state of the system.7 For expo-
sitional purposes, we initially consider the case when
the demand information I2 is void. Throughout this
paper, when it is clear from the context, we omit the
arguments of a given function.
First, let r i2 be firm i’s unconstrained expected profit,

which can be expressed as

r i2�y
i
2�y

j
2
= Ɛ�−ci2yi2+ pi2 min�yi2�Ri2�yj2
��� (2)

Second, if firm i knew firm j’s order-up-to level yj2,
then firm i’s best response would come from maxi-
mizing expected profits, taking into account its initial
stock xi2 and the competitor’s action. In other words,
retailer i would solve

max
yi2≥xi2

ci2x
i
2+ r i2�yi2�yj2
� (3)

Because the term ci2x
i
2 in Equation (3) is con-

stant, firm i’s best response actually comes from
maximizing r i2�y

i
2�y

j
2
 subject to y

i
2 ≥ xi2. If the solu-

tion to this optimization problem is unique, then
we can define the best-response function bi2�x

i
2�y

j
2
 ≡

argmaxyi2≥xi2�r
i
2�y

i
2�y

j
2
�, which represents the optimal

stocking level in period 2 for firm i, in response to a
level yj2 from firm j , starting with a position of xi2.
Per Assumption (4), both firms decide the inven-

tory levels simultaneously. Therefore, firm i does not
know in advance what level yj2 firm j will select (as it
usually occurs in practice). Thus, to analyze the com-
petition we use the notion of Nash equilibrium. In our
setting, a Nash equilibrium, if it exists, is given by two
functions ei2 and e

j
2 that might depend on the initial

stock levels �xi2�x
j
2
 and are such that b

i
2�x

i
2� e

j
2
 = ei2

7 By definition, a mixed strategy is a probability distribution over
pure strategies (see Fudenberg and Tirole 1991).

and bj2�x
j
2� e

i
2
= e

j
2. Put differently, no player is better

off by unilaterally deviating from the equilibrium. It is
important to note that if the equilibrium is unique for
any initial conditions �xi2�x

j
2
, then e

i
2 and e

j
2 are real

single-valued functions. Otherwise, ei2 and e
j
2 are only

correspondences unless one of the (multiple) equilib-
riums is somehow specified. In Theorem 1 we show
that the equilibrium in period 2 is indeed unique, and
therefore we can define the equilibrium expected profit
 i
2 by replacing the equilibrium actions in the objec-
tive function of Equation (3) to obtain

 i
2�x

i
2�x

j
2
= ci2xi2+ r i2�ei2�xi2�xj2
� ej2�xj2�xi2

� (4)

If we now consider two periods, the notion of Nash
equilibrium as a solution concept can be extended
to this setting through a refinement known as sub-
game perfection. An equilibrium is subgame perfect
if it induces a Nash equilibrium in each subgame of
the original game (see Fudenberg and Tirole 1991). In
our context, a subgame corresponds to a game that is
similar to the original one but with one less period
to go. In particular, the last period is a subgame of
the two-period game. Therefore, in the first period we
can construct the best-response functions just as we
did for the last period, but the only caveat is that now
the expected profit is the sum of the immediate profit
plus the future profit to go, and the latter must be the
equilibrium profit of the single-period subgame. For-
mally, the unconstrained expected profit in period 1
is given by

r i1�y
i
1�y

j
1
 = Ɛ�−ci1yi1+ pi1 min�yi1�Ri1�yj1
�

+ i
2��y

i
1−Ri1�yj1

+� �yj1−Rj1�yi1

+
�� (5)

where  i
2 is the equilibrium expected profit of the

last period subgame defined in Equation (4). Note
that the latter is evaluated in xi2 = �yi1 −Ri1�y

j
1



+ and
x
j
2 = �yj1−Rj1�yi1

+, and therefore the order-up-to level
decisions in period 1 affect the initial conditions (and
equilibrium) in period 2.
The best-response functions in period 1 are ob-

tained from maximizing r i1�y
i
1�y

j
1
 now subject to the

constraint yi1 ≥ xi1, i.e.,

bi1�x
i
1�y

j
1
= argmax

yi1≥xi1
�r i1�y

i
1�y

j
1
�� (6)
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and a Nash equilibrium in period 1, if it exists, is
given by two functions ei1 and e

j
1 that might depend

on the initial stock levels �xi1�x
j
1
 and are such that

bi1�x
i
1� e

j
1
= ei1 and bj1�xj1� ej1
= ej1. As before, we assume

(and later prove in Theorems 2 and 3) that equilib-
rium in period 1 is unique for any given initial condi-
tions �xi1�x

j
1
, and therefore the expected equilibrium

profit in period 1 is given by

 i
1�x

i
1�x

j
1
= ci1xi1+ r i1�ei1�xi1�xj1
� ej1�xj1�xi1

� (7)

The previous definitions were given for the case
when the demand information in the second period I2
is void. The latter would be valid if the demand across
periods was independent. However, if the retailers
can use demand information from the first period
to predict demand in the second period, then their
actions, and consequently the competitive equilib-
rium, will be contingent on the information that is
actually available. Therefore, in that case, we write
r i2 � I2 , b

i
2 � I2 , e

i
2 � I2 , and  

i
2 � I2 instead of r

i
2, b

i
2, e

i
2, and  

i
2,

respectively, in the equations above, and all the expec-
tations are conditional on I2.

4. Existence and Uniqueness of
Equilibrium

We now present the structural results that we use
later to compare different competitive settings. Our
goal in this section is to prove the existence of a
unique pure-strategy subgame-perfect equilibrium for
the three cases mentioned in Table 1. These results
have theoretical value but also allow us to understand
the benefits of QR by computing comparative statics
of the unique equilibrium, which is what we do in §5.
We start by considering the single-period problem

in §4.1. Then, in §4.2 we consider the two-period case,
and we study the two most cited QR models in the
literature, namely, the demand signal and the midseason
replenishment models.8 It is worth pointing out that,
when both retailers are symmetric, the results can be
extended to an arbitrary number of periods under
a linear demand splitting, as shown in the online
appendix.

8 In Cachon and Terwiesch (2005), these two models are defined
in terms of the reactive capacity and are referred to as limited and
unlimited but expensive, respectively.

4.1. Single-Period Case
The single-period subgame that takes place in
period 2 is an essential building block in our model.
To simplify the exposition, we omit the dependence
on the demand information vector I2, but all the dis-
cussion throughout this section remains valid if we
replace the subindex t = 2 with 2 � I2, and all the expec-
tations are conditional on I2.
We first consider the unconstrained game, i.e., the

game when the initial inventory levels are equal to
zero. From Equation (2), it is clear that r i2 is concave
in yi2, for all y

j
2. Thus, the optimal inventory policy is a

base-stock policy with target level si2�y
j
2
, which can be

obtained from the first-order conditions Pr�Ri2�y
j
2
 ≥

si2�y
j
2

= ci2/pi2. Solving the latter yields

si2�y
j
2
=

{
NV i− yj2 when yj2 ≤ qj2�NV i
�

qi2�NV
i
 otherwise�

(8)

where NV i ≡ �F −1
2 �ci2/p

i
2
 corresponds to the newsven-

dor stocking quantity when firm i faces all demand,
i.e., when yj2 = 0 (recall that 1 − ci2/p

i
2 is the news-

vendor critical ratio).
In Figure 1 we plot si2�y

j
2
 and s

j
2�y

i
2
. For simplic-

ity, we omit the subindex t = 2, and firm i is such
that ci/pi < cj/pj . The base-stock functions si�yj 
 and
sj �yi
 intersect only once, which means that in the
unconstrained competitive game there exists a unique

Figure 1 Unconstrained Single-Period Base-Stock Functions
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Nash equilibrium, which we denote E = �Ei�Ej
. The
shaded regions (I)–(IV) are used in the proofs pro-
vided in the electronic companion.
If now we allow the initial inventory levels to

be nonzero (i.e., we consider the constrained game),
given the concavity of r i2, it follows that firm i’s best
response is bi2�x

i
2�y

j
2
 = max�xi2� si2�yj2
�. Therefore, in

the constrained competitive game, a graph of the best
responses would look just as Figure 1, except that the
vertical and horizonal stretches would move right and
down, respectively. Hence, we obtain our first result.

Theorem 1. For all �xi2�x
j
2
, there exists a unique Nash

equilibrium �ei2�x
i
2�x

j
2
� e

j
2�x

j
2�x

i
2

 of the stocking game. In

addition, we can characterize �ei2� e
j
2
 as follows. Without

loss of generality, assume that ci2/p
i
2 ≤ cj2/pj2 ( firm i has a

higher newsvendor critical ratio). Then

e
j
2�x

j
2�x

i
2
=max�xj2� qj2�NV j
� and

ei2�x
i
2�x

j
2
=max�xi2� qi2�NV i
�NV i− ej2�xj2�xi2
��

We can see from Theorem 1 that the equilibrium
strategy of the firm with the lower critical ratio is
independent of the competitor’s inventory level. This
is intuitive because, for that firm, leftover inventory
impacts profits more. The reverse is not true: the equi-
librium strategy of the higher critical ratio firm may
depend on how much inventory is available at the
competitor.
Theorem 3 of Lippman and McCardle (1997) proves

that the unconstrained competitive game with sym-
metric retailers has a unique Nash equilibrium. The
result requires the demand allocation functions to be
deterministic and strictly increasing, just as in our set-
ting. Theorem 1 in this paper extends the result by
Lippman and McCardle (1997) in the sense that we
consider the constrained game (i.e., the initial inven-
tory levels can be nonzero), and we allow for asym-
metric retailers (i.e., they can face different costs and
prices).
From a technical standpoint, the unique equilib-

rium in the single-period problem follows from the
fact that the unconstrained expected profit r i2 is con-
cave in firm i’s action yi2. To prove the existence of
a unique pure-strategy subgame-perfect equilibrium
in the two-period game, we will need to show that
r i1 is (strictly) quasiconcave in y

i
1. For that, we first

need to show that  i
2, the equilibrium expected profit

in the single-period problem, is concave in firm i’s
initial stock level xi2. Note that we have to consider
the equilibrium expected profit because, by the defini-
tion of subgame perfection, the retailers assume that
in the last period a Nash equilibrium will be played,
given any initial state �xi2�x

j
2� I2
 (we refer the reader

back to the discussion at the end of §3.2). The follow-
ing proposition provides the theoretical result that we
need to analyze the two-period game.

Proposition 1. For i= 1�2 and for any (uncensored)
market information I2, the expected equilibrium profit
 i
2 � I2�x

i
2�x

j
2
 is concave in xi2, for all xj2.

4.2. Two-Period Case
We now examine the two-period case. We consider
two models that seem to concentrate most of the
attention in the literature (see, for instance, Cachon
and Terwiesch 2005). Figure 2 shows a schematic
description of both models.

4.2.1. Demand Signal. The first QR model we
consider is based on the one studied (for a single
firm) in Iyer and Bergen (1997). A similar sequence
of events has been used in several other papers (see,
for instance, Cachon and Swinney 2009). The plan-
ning horizon is divided into two periods. The last
one represents the retail selling season, whereas the
first one represents a period during which a demand
signal is revealed. The latter could simply represent
data that is collected right before the season starts
(for example, in fashion shows, mock stores, and
focus groups, or by consulting experts). We assume

Figure 2 QR Models: Demand Signal (Top) and Midseason
Replenishment (Bottom)
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that the demand signal is informative, meaning that
it is correlated with the actual demand during the
season. Otherwise, this model reduces to the single-
period problem studied in the previous section. A QR
retailer can place orders before and after observing
the demand signal, whereas a traditional SR retailer,
because of longer lead times, can only place a sin-
gle order before the additional demand information
becomes available. The sequence of events for a QR
retailer is depicted in Figure 2 (top timeline).
Given that there is no demand realization in the ini-

tial period (Ri1 = R
j
1 = 0), the unconstrained expected

profit for either an SR or QR retailer reduces to

r i1�y
i
1�y

j
1
=−ci1yi1+ Ɛ� i

2 � I2�y
i
1�y

j
1
�� (9)

where the expectation is with respect to the (a priori)
distribution of I2. Note that r i1�y

i
1�y

j
1
 is concave in y

i
1,

for any yj1 (from Proposition 1). Therefore, the exis-
tence of a pure-strategy (subgame-perfect) Nash equi-
librium in the unconstrained competitive game is
guaranteed by Theorem 1.2 in Fudenberg and Tirole
(1991).9 Moreover, also because of the concavity of
r i1, firm i’s best response is a base-stock policy si1�y

j
1
.

Therefore, just as in the single-period model, the best-
response function in the constrained game is equal
to bi1�x

i
1�y

j
1
= argmaxyi1≥xi1�r i1�yi1�y

j
1
�=max�xi1� si1�yj1
�.

The following theorem provides conditions under
which the equilibrium is unique.10

Theorem 2. If ci1 �= ci2 for i = 1�2, then the stocking
game with a demand signal has a unique subgame-perfect
equilibrium. In that equilibrium, both retailers play pure
strategies.

Three technical observations about Theorem 2 are
worth noting. First, when ci1 = ci2, the equilibrium
exists; in fact, not ordering in the initial period would
be an equilibrium, but in general it might not be
unique (though the profits achieved are the same
under any equilibrium).11 Second, the theorem rules

9 The theorem actually requires that the strategy space is com-
pact. Because the retailers would never order an infinite stock, it is
always possible to restrict their actions to a compact set.
10 When the equilibrium is not unique, si1�y

j
1
 and b

i
1�x

i
1�y

j
1
 are actu-

ally correspondences rather than functions.
11 Notice that if ci1 > c

i
2, then the equilibrium is to not order anything

in the initial period. On the contrary, if ci1 < ci2, then a positive
amount is ordered in t = 1.

out the existence of an equilibrium in which the retail-
ers randomize over pure strategies, because otherwise
it would contradict the fact that there is a unique
subgame-perfect equilibrium. Third, per Assump-
tion (4), the strategies played by the retailers must
be Markovian. Hence, what we actually prove is that
there exists a unique Markov-perfect equilibrium (see
§13 in Fudenberg and Tirole 1991). However, because
the state �xi2�x

j
2� I2
 contains all the payoff-relevant

information in period 2 (from Theorem 1), any strat-
egy that induces a subgame-perfect equilibrium must
be Markovian, or at least equivalent to a Markovian
strategy. To be precise, all histories that lead to the
same state �xi2�x

j
2� I2
 result in the same best responses

and same equilibrium. Hence, the histories can be
partitioned according to the state �xi2�x

j
2� I2
 they lead

to, and thus any subgame-perfect strategy can be
mapped into a Markovian strategy. This observation
justifies the claim that there is a unique subgame-
perfect equilibrium. A similar justification is given in
Hall and Porteus (2000).
Example 1 (Iyer and Bergen 1997). The two-period

demand signal case allows us to model the competi-
tion between a traditional retailer (i.e., one with very
long lead times) and a QR retailer that is modeled
as in Iyer and Bergen (1997). In that paper, demand
during the retail selling season is assumed to be nor-
mally distributed; i.e., D2 ∼N�&�'2
. The variance '2
is assumed to be known, whereas the average size
of the market & is uncertain. Information about &
in the initial period is modeled as a normal distri-
bution with mean ( and variance )2. Thus, at time
t = 1, the prediction of season demand is normally
distributed with mean ( and variance '2 + )2. Then
the demand signal d is realized, and the QR retailer
performs a Bayesian update of its belief regarding &.
In other words, we have that I2 = �d�, and D2 � I2 ∼
N�(�d
�'2+ 1/+
, where

(�d
= '2(+ )2d
'2+ )2 and += 1

'2
+ 1
)2
�

Note that 1/+ < )2. Therefore, after the realization of
the demand signal d is observed, the QR retailer has
a more accurate prediction of season demand. The
traditional retailer cannot make use of the demand
signal because of long lead times. In other words, it
cannot place a second order after the demand signal
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is realized. This is incorporated in our model by let-
ting ci2 = pi2 for the traditional retailer. As long as it
is cheaper to order in the initial period (for both
retailers), the conditions of Theorem 2 hold, and the
competition between the QR firm and the traditional
retailer has a unique subgame-perfect equilibrium.

4.2.2. Midseason Replenishment. In the previous
QR model, the demand signal does not deplete any
stock. That is, the acquisition of additional demand
information in the initial period does not affect the
inventory that is carried over to the final period. This
simplifies the analysis and allows us to prove the
existence of a unique equilibrium under fairly gen-
eral conditions (see Table 1). In the current section,
we consider a second QR model that differs from the
previous one in few subtle but fundamental aspects.
Specifically, the selling season comprises both peri-
ods, the actual sales that occur in the initial period
play the role that the demand signal previously had,
and the procurement in the final period comes to
replenish the inventory that has been depleted (hence
the name for this case). The sequence of events is
depicted at the bottom of Figure 2. An example that
would fit this QR model is the Sport Obermeyer case
(Fisher and Raman 1996), where 20% of initial sales
provides an excellent estimate of the remaining 80%.
The unconstrained expected profit r i1�y

i
1�y

j
1
 in the

initial period (t = 1) is given by Equation (5). This dif-
fers from the expression we considered in the demand
signal case because now sales can occur in period 1
(see Equation (9)). Moreover, the profit-to-go  i

2 � I2 is
evaluated in the remaining inventory, and r i1 is no
longer guaranteed to be concave. Fortunately, we are
able to show that it is quasiconcave under certain con-
ditions to be introduced next, and hence, the optimal
policy is still a base-stock policy dependent on yj1.

Proposition 2. Assume the following for i= 1�2:
(i) pi1 ≥ ci2 ≥ ci1;
(ii) D1 has infinite support and a log-concave p.d.f., i.e.,

log�f1�d

 is concave in d;
(iii) I2 = �D1� and D2 � I2 = kD1 + -, where k ≥ 0 and -

is a random variable independent of D1 with p.d.f. g such
that for all x

max
{
0�
f ′
1

f1
��qi1


−1�x


}
≤max

{
0�
g′

g
��qi2


−1�x


}
/ (10)

(iv) if k > 0, then qi2�d
= 0i2d.

Then, r i1�y
i
1�y

j
1
 is quasiconcave for all yj1, and the

constrained best response is bi1�x
i
1�y

j
1
 =max�xi1� si1�yj1
�,

where si1�y
j
1
 is the (unconstrained) base-stock level, which

is unique.

Condition (i) in Proposition 2 requires that the cost
does not decrease over time and that the initial price
is not smaller than the midseason replenishment cost.
This would be the case if the price is fixed throughout
the planning horizon and the midseason replenish-
ment is more expensive than the initial procurement.
Condition (ii) requires demand D1 to be log-concave
with an infinite support.12 Corollary (2) below pro-
vides examples of common distributions that meet
this requirement. Condition (iii) specifies the depen-
dency between D1 and D2 that is allowed. Notice that
Equation (10) is satisfied if f1 has a decreasing p.d.f.
or if it is not larger than g in the likelihood ratio
order. For example, this is the case when the initial
period represents a small fraction of the total season
and demand is Normal (see Example 2). Finally, con-
dition (iv) requires a linear splitting rule in the final
period whenever D1 and D2 are not independent.
The central idea in the proof of Proposition 2 is to

show that the following inequality holds:

12r i1
�1yi1


2
<21��q

i
1


−1�yi1


(
1ri1
1yi1

)
�

where 21�y
=max
{
0�
f ′
1

f1
�y


}
� (11)

Note that quasiconcavity and uniqueness follow
directly from (11). In fact, for a given yj1 ≥ 0, consider a
critical point s∗ such that �1r i1/1y

i
1
�s

∗�yj1
= 0.13 From
inequality (11), s∗ is necessarily a strict maximum; i.e.,
�12r i1/�1y

i
1

2
�s∗�yj1
 < 0. Furthermore, this maximizer

must be unique because otherwise there would have
to be a minimum in between any two maxima that
would contradict (11). This shows that r i1�y

i
1�y

j
1
 as a

function of yi1 (and for a given y
j
1) is first increasing

and then decreasing; i.e., it is quasiconcave.
Proving Equation (11) is not straightforward, and

we rely on conditions (i)–(iv) in Proposition 2 to

12 To be precise, the support must be either the real line or an inter-
val of the type �a�+�
.
13 Note that a critical point must exist because for yi1 very large, r

i
1

is eventually decreasing.
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bound the second derivative of r i1 by its first deriva-
tive. Condition (i) is needed to rule out local maxima
and nonsensical solutions (think of a newsvendor in
which the salvage value is greater than the selling
price). The log-concavity in condition (ii) is needed
to generate bounds in the proof and the unbounded
support is used to guarantee that the inequality (11) is
strict. The last two conditions ((iii) and (iv)) provide
a correlation structure that is amenable to analysis.
Note that when there is correlation, the second-period
profit  i

2 � I2�x
i
2�x

j
2
 depends on the first-period demand

D1 in two ways: through the inventory that is car-
ried over, �xi2�x

j
2
, and through the market informa-

tion, I2. Thus, computing expectations with respect
to D1 becomes quite involved. We can overcome this
obstacle by imposing condition (iv), which allows us
to make a linear change of variables that reduces the
double dependency on D1 to a single dimension.14 We
do this for tractability reasons, but it does not affect
the essence of the game in the second period (per The-
orem 1, the inventory level of the firm with the higher
critical ratio still depends on the competitor’s action).
We can now state the main result of this section.

Note that this result applies both to the cases of QR
versus QR competition and QR versus SR competition
by appropriately setting the price/cost parameters if
necessary (the same holds for Theorem 2).

Theorem 3. If conditions (i)–(iv) of Proposition 2 are
satisfied and pi1 ≥ pi2 for i = 1�2, then the stocking game
with midseason replenishment has a unique pure-strategy
subgame-perfect equilibrium.

As in Theorem 2 for the demand signal case, The-
orem 3 shows existence and uniqueness of a pure-
strategy subgame-perfect equilibrium. However, there
are a some differences. First, Theorem 3 requires a
few more conditions than Theorem 2 (see Table 1
for a comparison). In particular, the condition pi1 ≥ pi2
is used in the proof of uniqueness to show that
dsi1/dy

j
1 ≥−1; i.e., if firm j increases (decreases) its

inventory level by one unit, then firm i does not
decrease (increase) its stock by more than one. Second,
because in the midseason replenishment case r i1 is qua-
siconcave rather than concave, we cannot rule out the

14 See Equation (20) in the proof, provided in the electronic com-
panion.

existence of an equilibrium in which firms play ran-
domized strategies. Another consequence is that the
equilibrium profit  i

1 defined in Equation (7) is not
concave either, and therefore we are not able to extend
Theorem 3 to a larger number of periods.
Despite the additional conditions required in The-

orem 3, there are several interesting cases for which
they hold. Two of them are given in the next
corollaries. Corollary 1 shows the simplest application
of Theorem 3 by assuming independent and iden-
tically distributed (i.i.d.) demand. On the contrary,
Corollary 2 shows an application with demand that is
correlated across periods. We then use the latter in
an example that resembles the QR model in the Sport
Obermeyer case (Fisher and Raman 1996).

Corollary 1 (Independent Demands). Assume
that ci1 ≤ ci2, p

i
1 ≥ pi2, and qi1 = qi2 for i = 1�2. If the

demands D1, D2 are i.i.d. and D1 is log-concave with
infinite support, then the stocking game with midseason
replenishment has a unique pure-strategy subgame-perfect
equilibrium.

Corollary 2 (Correlated Demands). Assume that
ci1 ≤ ci2, p

i
1 ≥ pi2, and qi1�d
 = qi2�d
 = 0id for i = 1�2.

Let -1� -2 be two independent random variables such that
D1 = -1 and D2 � I2 = kD1 + -2, with k > 0 (thus, + ≡
Corr�D1�D2
 = k

√
Var�D1
/Var�D2
 > 0). Furthermore,

let
• -1, -2 follow normal distributions with parameters

�(1�'1
 and �(2�'2
, respectively, and (1 ≤ (2 and
'1 ≥ '2; or
• -1, -2 follow truncated normal distributions with

parameters �(1�'1
 and �(2�'2
, respectively, and (1 ≤
(2 and '1/(1 ≥ '2/(2; or
• -1, -2 follow gamma distributions with parameters

�a1� &1
 and �a2� &2
, respectively, and &1 ≤ &2 and 1 ≤
a1 ≤ a2; or
• -1, -2 follow exponential distributions.
In the four cases above, the stocking game with mid-

season replenishment has a unique pure-strategy subgame-
perfect equilibrium.

Example 2 (Fisher and Raman 1996). Consider
the case when the demand vector �D1�D2
 follows
a multivariate normal with marginal distributions
Dt ∼N�(t�'t
 and covariance Cov�D1�D2
 = +'1'2,
with + ≥ 0. Then, we have that the demand in the
last period conditional on the demand realization
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in the initial period is given by D2 � I2 = kD1 + -2
with k= +'2/'1, and -2 is normally distributed with
parameters �(2 − k(1�'2

√
1−+2
 and is independent

of D1 �= -1
. Notice that if there is positive correlation
(+> 0), then Var�D2 � I2
= '22 �1− +2
 < '22 =Var�D2
. In
other words, as in Example 1, the updated forecast
D2 � I2 is more accurate than the unconditional predic-
tion of D2.15 It can be shown that the condition on
the normal distributions in Corollary 2, in this case,
reduces to

(1 <(2 and '1 ≥ '2 max
{√
1−+2�+ (1

(2−(1

}
� (12)

Hence, if the latter holds, then Theorem 3 applies.
In particular, this would be the case if a QR retailer
can place an order after observing a small frac-
tion (e.g., 20%) of the total season demand (so that
(1�(2), and these early sales provide relevant infor-
mation about what should be expected in the remain-
der of the season (i.e., the correlation + is high).

5. Quick vs. Slow Response
Competition

In this section we provide an extensive study on
the two-period (T = 2) inventory game. We do this
analytically when tractable; otherwise, we proceed
numerically. Theorems 2 and 3 provide the theoretical
grounds that guarantee the existence and uniqueness
of the equilibrium. We now perform comparative stat-
ics; i.e., we study how the equilibrium depends on the
key parameters of the model. Because the equilibrium
is unique, we can indeed build one-to-one mappings
with respect to the input parameters.
In §5.1 we first define the scenarios used in our

study. Then, in §§5.2 and 5.3 we compare inventory
levels and profits, respectively. For expositional pur-
poses, we focus on the midseason replenishment case.
The results presented below hold for the demand sig-
nal case as well, except for a few numerical observa-
tions. These minor differences are pointed out when
they occur, and we describe them more extensively in
the online appendix.

15 Under the conditions of Proposition 2, Var�D2
 = k2Var�D1
 +
Var�-
≥Var�-
=Var�D2 � I2 
.

5.1. Definition of Three Market Configurations
We are interested in quantifying the competitive
advantage of QR over SR (slow response). In particu-
lar, we compare inventory levels and profits vis-à-vis
the “traditional” competition between two SR firms.
For this purpose, we consider three main situations,
which we will denote by S-S, Q-S, and Q-Q, all falling
within the generic model presented above (see §3).
The first scenario, S-S, which is the base case, consid-
ers two SR retailers that can only place orders before
the start of the selling season at a cost cSR (i.e., they
are not able to replenish stock at time t = 2). Here, the
competition corresponds to the single-period equilib-
rium studied in Lippman and McCardle (1997). The
second case, Q-S, which is the focus of the paper, con-
siders the asymmetric competition between a QR and
an SR retailer. The SR retailer has the same replen-
ishment capabilities as in the base case (S-S), but
the QR firm is characterized by the ability to place
orders in both periods at a cost cQR. As in reality, we
allow the QR retailer to have the same, or possibly
higher, ordering cost than the SR firm (i.e., cQR ≥ cSR).
Finally, the third case, Q-Q, considers two symmet-
ric QR retailers (i.e., both firms can replenish in the
second period at a cost cQR).
In terms of notation, when we need to specify the

type of a firm and the scenario, we use two italic let-
ters of the form T1T2, which indicates a firm type T1
facing a competitor type T2. For instance, s

i�SQ
1 �y

j
1


denotes the unconstrained base-stock level of firm i,
which is an SR retailer facing a QR competitor (abbre-
viated SQ).
In our simulations, we assume a fixed price equal to

one in both periods and for both firms (pi1 = pi2 = pj1 =
p
j
2 = 1). Therefore, if firm i is a SR retailer, then ci1 = cSR
and ci2 = pi2 = 1, whereas if firm i is a QR retailer, then
ci1 = ci2 = cQR < 1. Figure 3 summarizes the three cases
that we analyze throughout this section.
Our demand model follows the structure presented

in Proposition 2, namely, D2 � I2 = kD1 + -. This allows
retailers to learn from the realization of D1 and
improve the forecast of the last period demand D2.
The parameter k determines the correlation between
D1 and D2. Specifically, += Corr�D1�D2
= k/

√
k2+ 1.

In Figures 4–8, we plot our results directly as a func-
tion of the demand correlation instead of k. For sim-
plicity, and to avoid negative demand, we assume
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Figure 3 Three Market Configurations: SR Symmetric Competition
(S-S, Top), Asymmetric Competition (Q-S, Middle), and
QR Symmetric Competition (Q-Q, Bottom)

that D1 and - are identically distributed, and follow
a gamma distribution with mean (= 1 and standard
deviation ' . In terms of the demand allocation func-
tion, we use a linear splitting rule qi1�d
= qi2�d
= 0id

with a 50% market share for each retailer (i.e., 0i = 0�5,
for i = 1�2). In the online appendix we provide a
numerical study for the case when the demand split
in the first period is nonlinear. Finally, we assume that
the initial stock is equal to zero (xi1 = 0, for i= 1�2).
Note that under the last two assumptions, linear

splitting and zero initial inventory, it can be shown
that when the retailers are symmetric (i.e., they share
the same price and cost structure so they are both
SR or QR), the equilibrium outcome is the same as
when there are no spillovers.16 In other words, in the
S-S (respectively, Q-Q) scenario, an SR (respectively,
QR) firm makes the same inventory decisions and
achieves the same expected profit as when there are
no spillovers. This allows us to compare our results
with those available in the literature for the noncom-
petitive single-firm case.

5.2. Equilibrium Inventory and Spillovers
We start by comparing the (first period) equilibrium
inventory levels between the base scenario (S-S) and

16 We refer the reader to §A in the online appendix for a detailed
discussion of symmetric competition.

the case when the retailers have asymmetric order-
ing capabilities (Q-S). We first present an analytical
result, which we then complement with our simula-
tions. The following proposition shows that when the
retailers have different replenishment capabilities, the
base-stock levels, and consequently, the best-response
functions, are shifted downward compared to the base
case. This holds for any deterministic splitting (i.e, not
necessarily linear) that satisfies Assumption (3).

Proposition 3. In the first period, the unconstrained
base-stock level is greater in S-S than in Q-S competition,
for both firms. In other words,

si�SS1 �y
j
1
≥ si�QS1 �y

j
1
� ∀yj1 ≥ 0 and (13)

s
j�SS
1 �yi1
≥ sj�SQ1 �yi1
� ∀yi1 ≥ 0� (14)

Moreover, in equilibrium, the first-period industry inven-
tory level is greater in S-S than in Q-S competition.
Formally,

ei�SS1 �xi1�x
j
1
+ ej�SS1 �x

j
1�x

i
1


≥ ei�SQ1 �xi1�x
j
1
+ ej�QS1 �x

j
1�x

i
1
� ∀xi1�xj1 ≥ 0� (15)

The first part of Proposition 3 is a pointwise com-
parison of the unconstrained base-stock levels for
each firm, which are shifted downward when one of
them has QR capabilities. This can be seen in Figure 4.
The horizonal axis represents an SR firm, and the ver-
tical axis represents either an SR firm (under S-S) or
a QR firm (under Q-S). Note that the best-response
functions under asymmetric competition (Q-S) are
no greater than the respective functions in the base
case (S-S), which graphically confirms Equations (13)
and (14).
In Figure 4, the two solid dots represent the equi-

librium under S-S and Q-S, respectively. Note that,
compared to the base case S-S, the equilibrium under
Q-S is shifted down and to the right. The shift down
should be expected, because a firm that has QR capa-
bilities will use its flexibility to order less in the first
period. The shift of the equilibrium to the right shows
that the reaction of the SR firm is to stock more. This
outcome is not obvious and is the net result of two
counteracting effects. On the one hand, the downward
shift of the best-response function of the QR firm (see
Equation (13)) induces the SR firm to stock more,
because there are more opportunities for demand
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Figure 4 First-Period Best-Response Functions

Notes. The two solid dots represent the equilibriums (S-S and Q-S), and the
star has an expositional purpose (see the discussion in §5.2). Here, we use
	= 0
7, � = 0
6, and cQR = cSR = 0
6.

spillover to occur. This first shift is represented by the
star in Figure 4. On the other hand, the best response
of the SR firm is also shifted downward under Q-S
competition (see Equation (14)), which makes it stock
less. Numerically, we have observed that the former
effect (to stock more) dominates the latter (to stock
less), and overall, the equilibrium shifts to the right.
Finally, despite the fact that the equilibrium inven-
tory levels of both firms move in opposite directions
(i.e., the QR firm stocks less and the SR stocks more),
the total inventory level of the industry decreases, as
stated in Equation (15) of Proposition 3. This can be
seen in Figure 4 by comparing the isoinventory lines
with slope −1.
An interesting observation from Figure 4 is that the

best-response function of the QR firm is decreasing,
then increasing, and eventually becomes constant. We
found this behavior in most of the simulations per-
formed for the midseason replenishment case and the
rationale is as follows.17 On the one hand, the decreas-
ing segment exists because the QR firm will receive
less spillover as the SR firm stocks more. On the other
hand, if the SR firm has an extremely large quantity

17 This numerical observation does not hold for the demand signal
case because demand only occurs in the last period; see §B.2 in the
online appendix for details.

of inventory, then the best response of the QR firm
is to ignore the competitor because it will not receive
any spillover demand. At that point, the QR firm is
better off choosing the inventory level that it would
order if spillovers did not occur at all. This explains
the constant segment.
For intermediate inventory levels, the best-response

function increases. Thus, there is a range in which the
best response dips below the constant level. In fact,
in that range the QR firm can reduce overall costs by
ordering less than the constant level in the first period.
Of course, by cutting the initial procurement, some of
its demand will leak to the SR competitor, but that can
pay off because it depletes inventory that would oth-
erwise be carried over to the second period. In fact,
if the SR retailer is left with little stock, then the QR
firm can recoup some of the demand it lost because it
will receive more spillover in the last period. Hence,
by letting demand leak in the first period, the QR
firm reduces inventory risk. This becomes even more
pronounced with demand correlation because the QR
firm can also learn at the competitor’s expense.18 To
the best of our knowledge, this numerical observa-
tion has not been reported in the literature. We refer
the reader to §B.1 in the online appendix for more
examples.
To conclude this section, we investigate the magni-

tude of the spillovers under Q-S competition. Figure 5
shows the net average spillover from the SR to the
QR firm in each period. A positive (respectively, neg-
ative) value for period t = 1�2 means that, on average,
the SR (respectively, QR) retailer is leaking demand
to the competitor. The figure also shows what we call
the net average excess inventory, i.e., the average dif-
ference (“SR minus QR”) in leftover stock. For this
curve, a positive value means that, on average, the SR
retailer has more unsold inventory at the end of the
second period. Note that the values in Figure 5 have
been normalized by 0Ɛ�D1 + D2�, which is the total
expected demand for a single firm without inventory-
based competition.
The first observation from Figure 5 is that the aver-

age spillover in the first period goes from the QR to

18 Recall that we do no allow demand to be censored; see Assump-
tion (2). Any benefits from learning would be reduced if the QR
firm could not forecast sales effectively because of low inventory
levels and demand censoring.
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Figure 5 Net Average Spillover from the SR to the QR Firm, and Net
Average Excess Inventory at the SR Firm as a Function of 	
(Values Normalized by 
Ɛ�D1 +D2�), with cQR = cSR = 0
5,
� = 0
3 (Top), and � = 0
6 (Bottom)
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the SR firm. As mentioned above, in equilibrium the
SR firm stocks more (mostly because the QR competi-
tor stocks less), and therefore it benefits from some
spillover in the first period. However, this is reversed
in the second period, and the spillover goes in larger
quantities from the SR to the QR retailer. Figure 5
confirms that, overall, the QR firm gets a larger share
of spillover demand. Remarkably, despite the even-
tual stockout that generates spillover, on average,
the SR retailer finishes the season with more unsold
stock, which confirms that the QR firm faces lower

inventory risk.19 This holds even without demand
correlation (+ = 0) and becomes more significant as
it increases (+ ↗ 1). For instance, for high demand
variability (' = 0�6) and high demand correlation
(+≥ 0�9), the average spillover received by the QR
firm in the second period may be as large as 10% of
the total expected demand without competition (recall
that we use the latter as the normalizing constant),
whereas in the same setting the SR firm receives less
than 3% in the first period, and it finishes the season
with much higher inventory.20

5.3. Profit Comparison
After analyzing the inventory levels in equilibrium,
we move on to study the retailers’ profits. As in
the previous section, we first present an analytical
result regarding the equilibrium profits, which we
then complement with numerical evidence. The fol-
lowing proposition compares the profits obtained by
a firm in the different competitive scenarios.

Proposition 4. Under linear demand splitting, if
cQR = cSR and the initial stock levels are zero, then the
profits a firm (SR or QR) can achieve in the different com-
petitive scenarios can be ordered as follows:

 QS
1 ≥ QQ

1 ≥ SQ
1 ≥ SS

1 � (16)

where  T1T2
1 represents the first period expected equilibrium

profit of a firm type T1 facing a competitor type T2.

A few observations are worth pointing out from
Equation (16). (i) The rightmost inequality shows that
the least preferred situation is to be an SR firm fac-
ing another SR competitor. This is because when both
retailers are symmetric, the equilibrium resembles the
outcome of two firms that do not compete with each
other, and therefore, spillovers do not occur (see the

19 The reader should keep in mind that Figure 5 reports averages.
Clearly, for a given demand realization, the SR retailer either stocks
out and generates spillover to the QR firm, or it finishes with
unsold inventory.
20 In the demand signal case, spillovers can only occur in the second
period and can favor the SR retailer when demand correlation is
low. Similarly, if the demand split is nonlinear, then the firms face
different coefficients of variation, and the total spillover across both
periods might favor the SR retailer. However, in either case, the QR
firm is still better off. See §§B.2 and B.3 in the online appendix for
more details.
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discussion at the end of §5.1). In contrast, under asym-
metric competition, the SR retailer can receive some
spillover (see Figure 5), and overall it can achieve
higher expected profits. Hence, an SR retailer would
prefer a QR competitor. (ii) The middle inequality
shows that an SR retailer competing against a QR
opponent would rather be a QR retailer itself. This
confirms that flexibility pays off, and that a retailer
benefits from being able to replenish in the second
period (even if the competitor has QR capabilities). (iii)
The leftmost inequality shows that the best scenario
for a QR retailer is to have an SR competitor. As men-
tioned in §5.1, in the symmetric Q-Q scenario there are
no spillovers. Hence, the QR firm prefers an SR com-
petitor so it can benefit from the spillovers, either by
selling more or by reducing inventory risk (see the dis-
cussion following Figure 5). Thus, part of the compet-
itive advantage of QR comes from the replenishment
agility asymmetry.
Proposition 4 shows that, for both types of firms,

asymmetric competition is preferred over a noncom-
petitive scenario in which spillovers do not occur. To
be precise, an SR firm prefers Q-S over S-S, and a QR
firm prefers Q-S over Q-Q. Of course, this result relies
on the assumptions that lead to Proposition 4 and is
driven by the structure of our model. In particular,
recall that we consider a competitive setting in which
firms can prevent demand from leaking, but they can-
not attract (or deviate) demand to themselves. From
that perspective, the competition in our model is less
aggressive, and the asymmetry is beneficial because
both retailers can eventually receive spillover demand.
To further illustrate Proposition 4, Figure 6 shows

the increase in the equilibrium expected profits with
respect to the base case  SS

1 when c
QR = cSR. The top

graph has ' = 0�3, and the bottom graph has ' = 0�6.
In each graph, three curves appear: the top curve rep-
resents the profit increase for a QR retailer under Q-S
competition, namely,  QS

1 / 
SS
1 − 1, which for simplic-

ity is denoted by QS in the graph; the middle curve
shows the profit increase for a QR retailer in the sym-
metric scenario Q-Q ( QQ

1 / SS
1 − 1, denoted by QQ);

and the bottom curve represents the profit increase
for an SR retailer under Q-S competition ( SQ

1 / 
SS
1 −1,

denoted by SQ).
The three curves in Figure 6 are positive and have

a clear order, as expected by Equation (16). More-
over, the curves are increasing with respect to +, the

Figure 6 Percentage Increase in the Equilibrium Expected Profits
with Respect to the Base Case �SS

1 as a Function of 	,
with cQR = cSR = 0
5, � = 0
3 (Top), and � = 0
6 (Bottom)

demand correlation across periods, and are higher
when there is more demand variability (' = 0�6). The
fact that the QQ curve is positive and increasing con-
firms that, even in the absence of spillovers, QR is
preferred over SR and is more profitable with higher
demand correlation. This is a restatement of what is
already known in the single-firm literature. What is
new from our model is the SQ curve, which shows
the value of the spillovers for an SR firm under asym-
metric competition. Similarly, the difference between
the QS and the QQ curves confirms that spillovers are
also valuable to a QR firm. In the online appendix,
we show through numerical examples that the order
given by Equation (16) remains valid even in cases
where the demand split in the first period is nonlin-
ear. However, asymmetric competition becomes rela-
tively less rewarding for the QR firm if, because of
the nonlinear splitting rule, it faces more uncertainty



Caro and Martínez-de-Albéniz: The Impact of Quick Response in Inventory-Based Competition
Manufacturing & Service Operations Management 12(3), pp. 409–429, © 2010 INFORMS 427

than its SR counterpart. This is quite intuitive: if the
SR retailer faces relatively stable demand, then the QR
firm receives less spillovers, which makes asymmetric
competition less attractive.
Figure 6 is based on the assumption cQR = cSR.

However, as cQR increases, the profit of a QR retailer
decreases. We can thus compute the break-even cost at
which a retailer would be indifferent between being
a QR or SR firm when it faces an SR competitor. This
cost differential, expressed as a percentage of cSR, rep-
resents the threshold below which it is advantageous
to be a QR firm. The threshold is depicted in Figure 7

Figure 7 Break-Even Cost That Makes a Retailer Indifferent Between
Being QR or SR, With and Without Spillovers, as a Function
of 	
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as a function of demand correlation, for values of cSR

equal to 0�3 and 0�7. In the same figure, we also show
the cost differential that makes a retailer indifferent
between being a QR or SR firm in a setting without
spillovers. Therefore, we identify the additional cost
increase that a QR firm can handle under asymmetric
competition.
Whereas the SR retailer always gains when its com-

petitor moves from SR to QR, this is not always true
for the QR retailer: it depends on the cost increase
associated with implementing QR. For fast fashion
retailers, the literature estimates the cost increase to
be 15%–20% compared to traditional SR firms produc-
ing in Asia (see Ghemawat and Nueno 2003, p. 11).
As Figure 7 shows, this is insufficient to justify QR
for small demand variability and/or small demand
correlation. For instance, the break-even cost is below
15% for + < 0�5 and ' = 0�3. Thus, our model shows
that for low demand variability and low correla-
tion, a retailer would prefer less flexibility and lower
cost; i.e., it would prefer being SR. This is the case
for “basic” items, e.g., white T-shirts. On the other
hand, for high demand variability and high correla-
tion, a retailer is better off having a higher production
cost but a faster response. This applies to “fashion”
goods, as those typically found in a Zara store. In
other words, in a competitive setting, our results con-
firm the fundamental rule that the supply chain (in
particular, its costs and flexibility) should match the
type of product. Functional products, such as stan-
dard garments, should have an efficient (i.e., low cost,
and usually less flexible) supply chain, whereas inno-
vative products, such as trendy items, should have
a supply chain that is responsive, which typically
requires excess buffer capacity, and therefore implies
higher operational costs (see Fisher 1997).
Finally, in the analysis throughout this paper, we

have taken the retailers’ replenishment capabilities as
given. We have shown that asymmetries are bene-
ficial for both players, compared to the symmetric
scenario, due to spillovers. However, if the retailers
could choose whether to be QR or SR, one could
think that these asymmetries might disappear. Fig-
ure 8 shows that this is not the case: There are situ-
ations where asymmetric competition is desirable for both
players, even when retailers can endogenously choose to
be QR or SR. In other words, if both retailers had



Caro and Martínez-de-Albéniz: The Impact of Quick Response in Inventory-Based Competition
428 Manufacturing & Service Operations Management 12(3), pp. 409–429, © 2010 INFORMS

Figure 8 Expected Equilibrium Profits as a Function of �≡ cQR − cSR,
with cSR = 0
5, � = 0
6, and 	= 0
7
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to choose simultaneously their replenishment capa-
bilities (QR or SR), there are instances in which the
cost differential makes the Q-S scenario able prefer to
both players. Figure 8 depicts the expected equilib-
rium profits as a function of the cost differential 5≡
cQR − cSR > 0, where we use SS as a shorthand nota-
tion for  SS

1 (the same for QQ, SQ, and QS). Note that
when the QQ curve is above the SQ curve, both retail-
ers would choose to be QR (i.e., Q-Q is preferred);
this corresponds to a low cost differential 5. When
the QQ curve is below the SQ curve and the QS curve
is above the SS curve, one retailer would choose to be
QR and the other would choose to be SR (i.e., Q-S is
preferred); this happens for intermediate values of 5.
Moreover, when the QS curve is below the SS curve,
both retailers would choose to be SR (i.e., S-S is pre-
ferred); this corresponds to a high 5.

6. Conclusions and Future
Research

In this paper, we formulated a two-period inventory
competition model for two retailers selling substi-
tutable items. The model can be used to analyze the
impact of (asymmetric) production costs and order-
ing flexibility on the competitive outcome, and specif-
ically on retailer inventory levels and profits. This is
the case when one of the firms has a lower produc-
tion (ordering) cost but can only produce at the begin-
ning of the selling season, whereas the second firm

has higher costs but can replenish stock during the
planning horizon, taking advantage of any additional
demand information that might become available. We
visualize the problem as the competition between a
traditional SR retailer that makes to stock before the
season starts versus a QR firm that has a flexible sup-
ply chain and can place orders more than once.
For asymmetric retailers, we provided conditions

that guarantee the existence of a unique pure-strategy
subgame-perfect equilibrium for the demand signal
and the midseason replenishment cases. In addi-
tion, we performed an extensive numerical study to
understand the impact of cost asymmetries, demand
variability, and correlation across periods on the
equilibrium inventory levels and the corresponding
profits. We made several important observations. For
instance, that a QR firm might be willing to let
demand leak to reduce inventory risk. We also con-
firmed that all the benefits from QR identified in
models without competition remain when retailers
compete. However, these benefits are larger when
the competitor is SR. Thus, part of the competi-
tive advantage of QR in inventory-based competition
comes from the ordering flexibility asymmetries. Fur-
thermore, we found that an SR retailer would also
prefer Q-S competition, compared to S-S. In other
words, Q-S competition is preferred by both retailers,
over S-S. Finally, depending on the cost differential
between QR and SR, the preference for Q-S remains
even when retailers can endogenously decide their
ordering capabilities (QR or SR).
Several extensions of this work are possible. First,

in terms of inventory competition models, an ideal
extension would be to prove existence and uniqueness
of equilibrium for the asymmetric case with an arbi-
trary number of periods, and possibly more gen-
eral demand allocation rules and a larger number
of retailers. However, the analysis is presumably not
straightforward. Second, in terms of understanding
the fast fashion phenomenon, there is still plenty
to be done. In fact, in this paper we have ignored
other distinctive aspects such as the endogenous
effect of higher fill rates on market share, similar
to Gaur and Park (2007). Incorporating these ele-
ments into our model is a challenging strand of future
research.
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