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Consumers become satiated with a product when purchasing too much too quickly. How much is too much
and how quickly is too quickly depends on the characteristics of the product relative to the time interval

between consumption periods. Knowing that, consumers allocate their budget to products that generate less
satiation effects. Retailers should then choose to sell products that induce minimal satiation, but usually this is
operationally more costly. To study this trade-off, we provide an analytical model based on utility theory that
relates customer consumption to price and satiation, in the context of multiple competing retailers. We deter-
mine the purchasing pattern over time and provide an explicit expression to determine the consumption level
in steady state. We derive market shares and show that they take the form of an attraction model in which the
attractiveness depends on price and product satiation. We use this to analyze the competition between firms that
maximize long-term average profit. We characterize the equilibrium under three scenarios: (i) price-only com-
petition, (ii) product-only competition, and (iii) price and product competition. The results reveal the interplay
between a key marketing lever (price) and the firm’s ability to offer products that generate less satiation. In
particular, we show that when a firm becomes more efficient at reducing satiation, its competitor may benefit
if competition is on product only, but not if it is on price and product. We also find that when satiation effects
are not managed, a firm’s profit may be significantly reduced while a strategic competitor can largely benefit.
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1. Introduction
For many products, consumers tend to make differ-
ent purchasing decisions over time. For example, most
people would usually avoid eating the exact same
meal in the exact same restaurant every day. This
observed pattern has been called variety-seeking behav-
ior, and it is associated with the utility derived from
the change itself (McAlister 1982, Kahn et al. 1986).
There have been many attempts in the literature to
explain this behavior through analytical decision mod-
els. In particular, recent research (Baucells and Sarin
2007) has proposed that satiation effects because of
past consumption of a good might reduce the util-
ity derived from new consumption. Satiation will thus
cause a consumer with a given budget to avoid con-
suming too much too quickly of any given good. This
results in a “diversification” of spending, which pro-
vides an aggregate, continuous version of variety-
seeking consumption.

Clearly, the propensity to seek variety to reduce sati-
ation depends on consumers’ intrinsic preferences, but
it also depends on the characteristics of the product

and the time interval between consumption periods.
For example, basic consumption goods can be con-
sumed on a frequent (e.g., daily) basis and they do not
usually generate much satiation. However, there are
other types of products for which satiation effects are
significant, such as particular food items or fashion-
able clothes. In industries where satiation effects are
important, firms must realize that the product offe-
ring, understood in a generic sense that includes pro-
duct design, store customer experience, etc., has an
influence on customers’ choice over time. Hence, selec-
ting an appropriate product with a low satiation effect
can allow retailers to improve the value proposition of
their business. In other words, by incorporating the
satiation effect into product decisions, firms can gen-
erate higher sales.

Depending on the industry, the specific way by
which low satiation can be achieved will be different.
For example, a restaurant can reduce the satiation of
its products not only by increasing the number of
dishes on the menu but also by changing the menu
itself more often (Bernstein et al. 2008). In apparel
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retailing, part of the success of fast fashion firms such
as Zara and H&M relative to the incumbents such as
the Gap can be attributed to more frequent assort-
ment rotation, which generates the feeling of novelty
among consumers (Keeley and Clark 2008). Specifi-
cally, these firms introduce new products on a regular
basis, e.g., biweekly in the case of Zara, which reduces
the satiation perceived by their customers. As a result,
Zara receives more visits to its stores than the com-
petition: 17 visits per year per consumer on average,
versus 3.5 in the industry (see Ghemawat and Nueno
2003). In general, the levers by which a firm can reduce
satiation effects include variety (assortment breadth)
and novelty (assortment rotation) among others. More
importantly, product strategies that satiate less are
operationally more costly (e.g., changing part of the
menu on a weekly basis, introducing new products
in stores frequently), and strategies that are easier to
implement typically satiate more (e.g., a low-cost fixed
menu, an apparel store with stable product offering).

Understanding how companies should manage the
satiation generated by their products is precisely the
objective of this paper. This needs to be closely coordi-
nated with pricing decisions in the same way that the
coordination of price and variety can shape the over-
all attractiveness of a store or brand (Hoch et al. 1999,
Cachon and Kök 2007). On the one hand, it is possible
that by choosing products that satiate less, a retailer
would be able to increase both its margin and the total
revenue by charging a higher price and still attract-
ing a larger market share. On the other hand, offering
less satiating products will also increase costs. Hence,
we consider price and product decisions simultane-
ously, and we specifically integrate marketing and
operational aspects to acknowledge that product deci-
sions reside at the interface of both functional areas,
and through product choice operations can indirectly
affect the pricing strategy (Tang 2009). Furthermore,
these two decisions also have an important external
impact because they modify the strategic interaction
between different firms: a change in product/price by
a given retailer might trigger a competitive response
from a competitor. We thus use game-theoretical tools
to identify equilibrium situations in a competitive
setting.

Our paper makes methodological as well as man-
agerial contributions. From a theoretical standpoint,
our approach to incorporate a behavioral element (i.e.,
satiation) as a controllable lever is a departure from
the usual formulations found in the literature. Indeed,
we consider an intertemporal utility maximization
problem that explicitly accounts for satiation dynam-
ics. We determine the purchasing pattern over time
and we derive steady-state consumptions. We use
these to obtain market shares, and we show that they
take the form of an attraction model that reduces to

the Chamberlin–Dixit–Stiglitz demand model when
the time interval between consumption periods is
large enough. Although we do not explicitly delve
into product design issues, we do consider that differ-
ent product decisions will result in different costs and
satiation levels. In that respect, our model formulates
a theory of product choice in a competitive setting,
driven by the satiation effect. We show the existence
of equilibrium in pure strategies, which is a nontriv-
ial task because the strategy space is two-dimensional
and the profit functions are not concave.

In terms of managerial insights, we find the
following:

• There exists a unique pure-strategy Nash equi-
librium in product and prices for the n-retailer game.
Hence, for every market configuration, there can only
be one outcome. This fundamental property sets the
ground for future empirical validation (see Allon
et al. 2010).

• When firms are symmetric, the equilibrium is
symmetric, and selecting the symmetric product is a
(nearly) dominant strategy for a firm that recognizes
satiation. In other words, for product selection, man-
agers need not worry about whether their competi-
tor is strategic. Also, as the number of competitors
increases, product satiation goes up. In other words,
in industries that are more competitive, firms should
place less emphasis on the product lever because the
consumer can mitigate satiation by diversifying con-
sumption across a larger number of firms.

• When firms are asymmetric, the equilibrium is
asymmetric. Therefore, if firms in practice have dif-
ferent prices, our model predicts that they must have
different operational capabilities. If firm i is able to
reduce its product satiation, e.g., because of process
improvement, then competitors should always dec-
rease their prices. Firm i should increase its own price,
unless product changes have a substantial impact on
consumers’ real income, in which case it might be
worthwhile to decrease the price.

• In general, firms that ignore satiation tend to
price incorrectly and are worse off. Also, firms should
aim at developing capabilities to offer less satiating
products more efficiently. However, because all firms
have the same incentive, they should be aware that
major improvements might be needed to guarantee
an increase in profits. Indeed, depending on the cur-
rent cost structure and the magnitude of the changes,
all firms can be better off after a “product war.” This
is in clear contrast with price wars that are always
detrimental to profits.

The rest of this paper is organized as follows. In §2
we review the literature. In §3 we present the con-
sumption model with satiation and characterize how
customers split their budget among different retailers.
In §4 we analyze the strategic game in which retailers
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compete and choose product and price strategically.
We conclude in §5. The analytical proofs are available
in the appendix.

2. Literature Review
There are mostly two areas of research relevant to
our work: first, models that describe variety-seeking
behavior and, second, competitive models on price
and product. Here we briefly describe the literature in
these two directions. There is a third stream that looks
at variety and assortment planning at a tactical level,
which we do not review here, but we refer the reader
to Ho and Tang (1998), Ramdas (2003), Lim and Tang
(2006), Caro and Gallien (2007), and Kök et al. (2008).

According to Kahn (1995), there are at least three
motivating factors that induce variety seeking: (i) cus-
tomers get bored or satiated with their most recent
purchase, (ii) customers prefer to change because of
external constraints, and (iii) customers switch brands
in an attempt to diversify and hedge against uncer-
tainty in their preferences. Whether a customer seeks
or avoids variety is idiosyncratic to the individual but
also depends on the type of product and the time
elapsed between successive purchases (Chintagunta
1998). To model variety-seeking behavior, one appro-
ach has used Markov chains to represent a customer’s
purchasing pattern; see Givon (1984), Kahn et al.
(1986), and Feinberg et al. (1992). Another modeling
approach considers a consumer utility that depends
on attribute/brand inventory levels, and satiation occ-
urs when the level exceeds a threshold; see McAlister
(1982) and McAlister and Pessemier (1982). Gilboa
and Schmeidler (1997) relate the utility of consum-
ing an item to the number of previous consumpti-
ons and derive long-run average relative frequencies,
very much in the spirit of our work. More recently,
Baucells and Sarin (2007) find the optimal consump-
tion levels in a discounted utility model with satia-
tion effects and observe that consumers progressively
spend more in products that generate less satiation.
They extend this model to include habituation effects
in Baucells and Sarin (2010).

The work mentioned above focuses mainly on
explaining customer behavior and managing variety
for a single firm. When multiple firms are consid-
ered, a competitive analysis is required. We are specif-
ically interested in competition on price and product.
For that, two major approaches have been devel-
oped in the literature based on whether competition
is localized or not. Anderson et al. (1992) provide
a general overview of product differentiation under
competition and how the localized and nonlocalized
approaches can be combined. Most of work on local-
ized competition builds on the address models by
Hotelling (1929) and Lancaster (1979), in which firms

compete in a virtual space of product characteristics.
This approach has recently been used to study the
competitive advantage of standard versus customized
product; see Cavusoglu et al. (2007), Alptekinoğlu
and Corbett (2008), Mendelson and Parlaktürk (2008),
and Xia and Rajagopalan (2009). In the nonlocalized
approach, a firm faces competition from all the other
firms in the industry instead of just its direct neigh-
bors. A recurrent feature of this approach is that mar-
ket shares can be written as an attraction model,
which provides analytical tractability (see Federgruen
and Yang 2009). Several models based on the multi-
nomial logit fall in this category and have been used
to study the effects of customer search (Cachon et al.
2008), demand substitution (Hopp and Xu 2008), and
hierarchical choice (Kök and Xu 2011) under com-
petition. Besbes and Saure (2010) consider pricing
decisions in addition to assortment choice under com-
petition. Models based on a representative consumer
correspond to another case of nonlocalized competi-
tion. In particular, the seminal works by Chamberlin
(1933) and Dixit and Stiglitz (1977) use a representa-
tive consumer to study the optimal level of variety
in an industry, though competition is on price only.
Finally, there is a stream of work that has studied
price and quality competition in which quality refers
to in-stock probability (see Bernstein and Federgruen
2004), waiting time (see Allon and Federgruen 2007),
or service reliability (see Federgruen and Yang 2009).
These papers represent cases of nonlocalized compe-
tition in which demand is usually taken as a primitive
of the model instead of deriving it from a utility max-
imization problem.

In this paper, we derive demand from a consump-
tion model. We consider a representative consumer
as in the derivation of the Chamberlin–Dixit–Stiglitz
(hereafter, CDS) demand model. However, our start-
ing point is somewhat different. We build on the sati-
ation model from Baucells and Sarin (2007), with two
main variations: first, we consider an infinite horizon
with a fixed budget per period to derive steady state
consumptions; second, we consider n competing prod-
ucts and focus on the strategic interaction between the
retailers selling the goods. In contrast with the liter-
ature on price and product competition, we integrate
a behavioral aspect of consumer choice (i.e., satiation)
and for that we explicitly consider intertemporal con-
sumption. Interestingly, we obtain market shares in
the form of an attraction model in which the attrac-
tiveness is a function of price and product satiation.
Because the CDS model and most representative con-
sumer models only depend on price, their use to
study product decisions has been limited. The survey
by Lancaster (1990, p. 191) makes this clear by stat-
ing that such models “provide no basis for a theory
of product choice and product design.” Our model
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explicitly incorporates product choice. Therefore, we
see it as a first step to build the aforementioned the-
ory. Finally, note that the qualitative study in Caro
and Martínez-de-Albéniz (2009) uses a simpler ver-
sion of the present model in which retailers only com-
pete on one dimension, product choice (which is mod-
eled as assortment rotation), and prices are taken as
given.

3. A Multiperiod Utility Model
with Satiation

Our objective in this section is to shed light on how
price and product decisions drive consumption over
time. The results constitute the building blocks for the
competitive analysis of §4.

3.1. Model Formulation
Consider an individual consumer—which we will
refer to as she—who maximizes her utility over T
periods, e.g., months. This consumer has an aggre-
gate budget per period for a category (e.g., apparel)
that can be spent at multiple retailers or in an outside
good that represents consumption in other categories.
We assume that all the budget must be spent in each
period. One could integrate a savings decision into
our model, but this would unnecessarily complicate
it. We assume that future consumption is less valu-
able to the consumer and is discounted at a rate �< 1
per period. Let i denote a particular firm, with i = 0
the outside good, and let n denote the total number
of competing firms. We denote xit the quantity bought
at retailer i in period t, and pi the price per unit at
retailer i.

Consumption of product i > 0 generates satiation;
i.e., consuming large quantities of the good may
reduce the utility obtained by the customer in subse-
quent periods. To model this effect, we follow Baucells
and Sarin (2007) and assume that the contribution
of the current consumption is an increment over the
satiation level achieved from previous consumption.
Formally, let yit be product i’s satiation level at the
beginning of period t, which can be seen as a con-
sumption stock level that remains from the previous
period. The incremental utility derived from con-
suming xit in period t is defined as ui4yit + xit5 −

ui4yit5, where ui4z5 is an increasing and concave
function that represents the utility generated by a
consumption stock level z.

Of course, the satiation level yit is related to pre-
vious consumption xi11 0 0 0 1 xit−1. As in Baucells and
Sarin (2007), we assume that this relationship takes
the form of exponential smoothing:

yit+1 = �i4yit + xit51 (1)

where �i ∈ 60115 is called the satiation retention factor
at retailer i. One can observe from this formulation

that yit =
∑�

�=1 �
�
i xit−� . In other words, the impact of

past consumption xit−� on the current satiation level yit
decays exponentially. For the outside good, we assume
that it does not generate satiation, i.e., �0 = 0, although
none of the results would be affected if it did.1

After specifying the utility derived from each
product, the consumer’s problem (CP) can thus be
defined as

4CP5 max
T
∑

t=1

�t−1

( n
∑

i=0

4ui4yit + xit5−ui4yit55

)

s.t.
n
∑

i=0

pixit ≤Wt for t = 11 0 0 0 1 T

yit+1 = �i4yit + xit5 for i = 01 0 0 0 1n1

t = 11 0 0 0 1 T

xit ≥ 0 for i = 01 0 0 0 1n1 t = 11 0 0 0 1 T 0

Here Wt is the consumer’s budget for period t. Alter-
natively, using a dynamic programming formulation
with Ut4yt5 the “utility-to-go” from period t onward,
we can write

Ut4yt5 = max
∑n

i=0 pixit≤Wt
xit≥0

{ n
∑

i=0

4ui4yit + xit5−ui4yit55

+ �Ut+14��4yt + xt55

}

(2)

and UT+14yT+15≡ 0, where 4��4yt + xt55i = �i4yit + xit5.
To avoid end-of-horizon effects, we focus on the

infinite horizon case T = � with a stationary per
period budget Wt ≡ W . As a result, Ut is stationary,
i.e., Ut ≡U , and satisfies the following Bellman equa-
tion (see Bertsekas 2000):

U4y5 = max
∑n

i=0 pixi≤W
xi≥0

{ n
∑

i=0

4ui4yi + xi5−ui4yi55

+ �U4��4y+ x55

}

0 (3)

3.2. Model Discussion
In the model formulation above, the consumer must
allocate her budget among several products. Note that
here we use the term “product” in the general sense
of Chamberlin (1933), which includes real/physical
characteristics as well as any intangible factors that
can influence customer preferences (e.g., assortment
rotation and store management policies). Therefore,
one could apply the model to a wider generic product

1 The outside good is an aggregation of all other product categories
in which the consumer could spend her budget. Assuming �0 = 0
means that there is always an external option that the consumer
has not consumed before (or that was consumed a long time ago).
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(e.g., a Zara T-shirt), a brand, or even an entire store.
Given this broad definition, we assume that each firm
offers only one (extended) product, so throughout the
paper we refer to products and firms interchangeably.
This assumption is shared by all competition models
à la Chamberlin; see Anderson et al. (1992) for further
discussion.

For a particular product, the satiation effect is incor-
porated through the retention factor �i. Though this
parameter is an abstract modeling device, it is simi-
lar to a discount factor and can be elicited easily (see
Baucells and Sarin 2007). An important remark is that
the value of �i is not only tied to the product’s charac-
teristics but also depends on the length of the interval
between time periods. In fact, regardless of the type
of product, if the time between consumption periods
is large enough, then there is no reminiscence of past
consumption and �i is close to zero. Another remark
is that even though products can be perfectly ranked
according to their satiation factors, product differen-
tiation in our model occurs horizontally. Indeed, at
equal prices, even a product with a high satiation fac-
tor can have a positive market share because of the
decreasing marginal utilities. Also, each product can
be seen as a substitute of every other one, so the com-
petition we analyze later is by construction nonlocal-
ized (see Moorthy 1998 for a model with vertically
differentiated products and localized competition).

Clearly, we are interested in situations in which sati-
ation effects are present (�i > 0). This is true in many
cases when products are purchased regularly. Take, for
instance, food (daily) or apparel (weekly or monthly
in women’s apparel; e.g., Zara consumers visit a store
17 times per year). Indeed, eating a pizza primavera
may generate a large utility at first, but when this has
been the same meal 10 days in a row, the incremental
utility of the 11th pizza is (usually) quite low. Simi-
larly, purchasing a T-shirt from a given store once may
provide a large utility, but purchasing one every week
is (again, usually) less satisfying because the store has
only so many designs, which tend to be similar (they
are consistent with a given store image). When sati-
ation is not relevant (i.e., �i = 0 for all i), our utility
model starts afresh in each period. In that respect, we
do not consider other intertemporal effects such as
reinforcement behavior (Kahn et al. 1986), customer
loyalty (Gans 2002), or habit formation (Baucells and
Sarin 2010), which are beyond the scope of the paper.

A few other modeling choices are worth discussing.
First, we consider an infinite horizon. Hence, we focus
on the long-term, steady state behavior of the con-
sumer. Although the optimal transient consumption
path will be computed, ultimately we are interested
in understanding how price and satiation influence
the share of the budget that each retailer captures in
the long run. Second, the price and satiation factor at

each retailer are known to the customer and remain
constant throughout the horizon. This assumption is
mainly made for tractability. It is also consistent with
the strategic focus of the game analyzed in §4, where
pi and �i represent the price and product positioning
chosen by firm i. These are decisions that involve mar-
keting, product development, store location/layout,
and supply chain design, which are usually kept fixed
for long periods. Thus, we do not consider any tactical
price or product changes (this would require a much
more complex analysis). Third, we have included in
the model an outside good to allow for consumption
in other categories. This can be interpreted as the no-
purchase option in the multinomial logit model or
as the reservation price in the Hotelling–Lancaster
approach. We assume that the outside good does not
satiate (�0 = 0), to represent the case when the con-
sumer has plenty of opportunities to spend her bud-
get elsewhere. Finally, we have ignored cross-satiation
effects, i.e., when the satiation level of product i is
affected by the past consumption of product j 6= i,
which might exist but have not been reported in the
literature.

3.3. Optimal Consumption Paths
To simplify the exposition, we can reformulate prob-
lems (2) and (3) using the (stationary) incremental
utility function, which is defined as vi4zi5 ≡ ui4zi5 −

�ui4�izi5. Letting zt = xt + yt and Vt4yt5 = Ut4yt5 +
∑n

i=0 ui4yit5 in Equation (2), with VT+14yT+15=
∑n

i=0 ui ·

4yiT+15, and then taking the limit T → �, we can
rewrite Equation (3) as

4SP5 V 4y5= max
z010001zn

{ n
∑

i=0

vi4zi5+ �V 4��z5

}

s.t.
n
∑

i=0

pizi ≤W +

n
∑

i=0

piyi

zi ≥ yi for i = 01 0 0 0 1n1

where (SP) stands for stationary problem. Let (SP-R)
be a relaxation of (SP) without the constraints zi ≥ yi,
i = 01 0 0 0 1n. With these definitions we can begin to
characterize the optimal consumption decision. First,
if vi4zi5 is concave in zi for all i, then an inductive
argument shows that V 4y5 is jointly concave in y. For
vi4zi5 to be concave, we need u′′

i 4zi5− ��2
i u

′′
i 4�izi5≤ 0,

which holds for all � and �i if z2u′′
i 4z5 is nonposi-

tive and nonincreasing in z≥ 0. The latter is satisfied
for many utility functions, such as power, logarith-
mic, quadratic, etc. The concavity of V 4y5 allows
us to characterize the optimal consumption decision
from first-order optimality conditions. The following
proposition shows that these conditions can be further
simplified. We omit the proof for the sake of space,
but it is available from the authors.
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Figure 1 Consumption Level at Two Retailers over Time with a Budget of W = 1, �= 0099, ui 4zi 5= 2
√
zi , and pi = 1 for i = 112
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Notes. The satiation retention factors are �1 = 001 and �2 = 006. The initial satiation is y11 = y21 = 0 in the left figure and y11 = y21 = 1 in the right one.

Proposition 1. Let �i < 1 for all i such that the initial
satiation level is positive; i.e., yi1 > 0. Assume that vi4zi5
is concave and v′

i4zi5 is convex in zi for all i. Then the
optimal policy for the customer’s problem (CP) converges
to an optimal solution of (SP-R).

The proof of this result is technical and long, but the
main idea is to show that the customer’s optimal con-
sumption policy is a unique sequence that converges
to a stationary solution, and for t → �, the nonnega-
tive constraints xit ≥ 0 are inactive. In fact, if the initial
satiation is zero for all i, then xit ≥ 0 is inactive for
all t ≥ 1. Therefore, (CP) has a unique stationary solu-
tion that is optimal for (SP) as well as (SP-R). A direct
implication is that we can ignore the Lagrange multi-
pliers of the constraints zi ≥ yi in the first-order con-
ditions of (SP). We use this fact in the theorem below.

Note that Proposition 1 needs vi to be concave so
that V 4y5 is concave and the structure of the problem
is well behaved. In addition, v′

i needs to be convex,
which is equivalent to having u′′′

i 4zi5−��3
i u

′′′
i 4�izi5≥ 0.

This is true when z3u′′′
i 4z5 is nonnegative and nonde-

creasing in z≥ 0, which, again, is satisfied for power,
logarithmic, or quadratic utility functions.2

We can now state the main theorem of this section
(the remaining proofs are in the appendix).

Theorem 1. Under the conditions of Proposition 1, the
optimal consumption policy 4xt1yt5 for the customer’s
problem (CP) converges to a stationary solution 4x�1y�5
such that xi� = 41 − �i5zi� and yi� = �izi�, where zi� is
uniquely defined by the first-order conditions

v′
i4zi�5

pi41 − ��i5
=� for i = 01 0 0 0 1n1 (4)

and � ensures that
∑n

i=0 pi41 −�i5zi� =W .

2 Note that the results here in §3 can be extended to the case in
which v4zi5 and v′4zi5 are concave and convex, respectively, for zi ∈
601 z∗

i 7, which is the interval where v4zi5 is increasing. This includes
the exponential utility.

Theorem 1, and in particular Equation (4), shows
that in steady state the consumer will diversify con-
sumption because of the decreasing marginal utili-
ties and the satiation effects (�i > 0). This contrasts
with the static multinomial logit and the Hotelling–
Lancaster model in which an individual consumer will
choose only one variant and consumption is diversi-
fied in the aggregate because of heterogeneity in tastes.
Theorem 1 also complements the results in Baucells
and Sarin (2007) because it supports the observation
that consumption tends to stabilize around an “equi-
librium level” in the periods that are not at the begin-
ning (or at the end, if the horizon is finite). The same
is observed by Popescu and Wu (2007), though in
a dynamic pricing model in which current prices
influence future demand. Figure 1 illustrates the con-
vergence of the consumption decisions for different
initial satiation levels.

It can be shown that xi� decreases as the number
of competing retailers n increases (higher competition)
and the firm’s satiation factor �i increases. On the
other hand, it increases as the competitors’ satiation
factor �j , j 6= i, increases. Under the regularity condi-
tion that zv′

k4z5 is nondecreasing for all k—which is
verified for power, logarithm, and quadratic utilities—
it can also be shown that the stationary consumption
xi� decreases in firm i’s price pi and increases in the
competitors’ prices pj , j 6= i.

3.4. An Attraction Model for Power-Type
Utility Functions

For the remainder of the paper, we assume that the
utility is of the power type: ui4z5 = z1−�/41 − �5,
with 0 ≤ � < 1. This family of utilities, or positive
monotone transformations of it, has been widely used
because of its mathematical tractability (see Baucells
and Sarin 2007). The parameter � gives some degree
of flexibility to model different attitudes with respect
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to satiation: the larger �, the more sensitive is the
customer’s marginal utility to changes in the satia-
tion level because of previous consumptions. In par-
ticular, if � equals zero, then the utility is linear and
the consumer will spend all her budget at the retailer
with the lowest price pi, regardless of whether the
item generates satiation on the consumer or not. That
would be the case of customers who are satiation indif-
ferent. On the other hand, large values of � imply
that customers perceive a large utility for initial con-
sumption but the incremental utility from additional
consumption is minimal. Therefore, they quickly
become satiated, and the consumption inventory level
must substantially decrease for them to derive utility
again.

For a utility function of the power type, we can
solve Equation (4) to obtain

xi� =
1
pi

p1−1/�
i 41−�i5441−��1−�

i 5/41−��i55
1/�

∑n
k=0p

1−1/�
k 41−�k5441−��1−�

k 5/41−��k55
1/�

W0

(5)

When the market is homogeneous (i.e., the budget W
and the utility functions ui are the same for all con-
sumers), retailers compete for the budget of a repre-
sentative consumer, and thus W in Equation (5) can
be seen as the total market size of the category per
period. A remarkable fact is that when �i = 0 for all i,
then the steady state consumption in Equation (5)
reduces to the well-known CDS demand model.3 This
shows that when satiation effects are not signifi-
cant, possibly because the time interval between con-
sumption periods is large enough, then our model
reduces to a common demand form found in the
literature.

Assuming a constant per-unit production cost ci,
retailer i’s long-term average profit can be written
as �i = 4pi − ci5xi�. Given a power utility function,
Equation (5) allows us to rewrite the profit of re-
tailer i as

�i =
pi − ci
pi

a4pi1�i5
∑n

k=0 a4pk1�k5
W1 (6)

where a4pi1�i5 2= p1−1/�
i b4�i5 and b4�i5 2= 41 − �i5 ·

441 − ��1−�
i 5/41 − ��i55

1/�0 The profit (6) can be
interpreted as the gross margin times dollar mar-
ket share times market size. Interestingly, the market

3 Other authors refer to it as the constant elasticity of substitution
(CES) model. The exact equivalence between Equation (5) and the
demand expression (7) in Dixit and Stiglitz (1977) is obtained by
setting �i = 0 for all i in (5) and s4q5= q1−1/�/4q1−1/� +p1−1/�

0 5 in Dixit
and Stiglitz (note that our � parameter is equivalent to 1 −� in the
paper by Dixit and Stiglitz).

share mi� 2= a4pi1�i5/4
∑n

k=0 a4pk1�k55 follows an attrac-
tion model with individual attraction ai = a4pi1�i5,
separable in pi and �i and decreasing in these
variables.

Such log-separable attraction structure is called
multiplicative competitive interaction (see, for instance,
Bernstein and Federgruen 2004) and is the result of
the consumer’s optimal consumption problem. Note
that whereas usually market shares are expressed in
terms of units sold, we instead find a market share
in dollar terms, but this does not change the essence
of the problem. In general, attraction models have a
large appeal in the literature because they are tractable
and have an intuitive interpretation (see Federgruen
and Yang 2009). Given their popularity, many stud-
ies take the attraction model as exogenously given.
In contrast, we derive it endogenously and we show
that it extends the CDS demand model by making it
dependent on a important product attribute such as
satiation and not only on price.

4. Retailer Decisions on
Price and Product

In this section, we build on the satiation model to
study how firms set prices and select products. The
results that follow assume a power-type utility func-
tion. As a robustness check, we numerically tested
all the results using a quadratic utility. Note that for
this function, the dollar market share pixi� does not
have an attraction form. However, in our experiments,
all the results continued to hold, with one exception
described at the end of §4.1. The full study is available
upon request.

4.1. Price Decisions Only
We start the competitive analysis assuming that prod-
uct characteristics are fixed; i.e., �i cannot be changed
by retailer i. This is the case in a market where the
competitors are stuck with different technologies or
capabilities that yield different levels of satiation. For
instance, consider the string of amusement parks in
Southern California. What each park can offer is quite
established, so competition is mostly on price (in prac-
tice, it calls for revenue management). In this paper,
we are interested in finding the Nash equilibria of the
pricing game in pure strategies: the game has a (pure)
Nash equilibrium if there exists 4peq1 1 0 0 0 1 p

eq
n 5 such that

no single firm can improve its profit �i by changing
unilaterally pi away from p

eq
i .

For a given vector of competitor prices, p−i, �i is
first increasing and then decreasing in pi, i.e., quasi-
concave. Existence of equilibrium follows and it is
unique, which can also be established from Gallego
et al. (2006). More importantly, it can be described as
follows.
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Theorem 2. There exists a unique pure-strategy Nash
equilibrium 4p

p-only
1 1 0 0 0 1 p

p-only
n 5 in the price-only game.

It is characterized by the unique solution to

pi − ci
ci

41 −mi�5=
�

1 −�
0 (7)

We can derive a number of observations from the
theorem. First, when � = 0, customers are indiffer-
ent to satiation, and as a result retailers engage in
Bertrand competition. Second, when two firms are
identical, i.e., i and j are such that ci = cj and �i = �j ,
then they will be priced identically in equilibrium.
In particular, when firms are symmetric (all equal, i.e.,
ci = c) then their prices are also identical, equal to

p
p-only
i =

c

1 −�

(

1 +
�

n− 1

)

for all i1 (8)

when no outside good is present (i.e., p0 = �). The
symmetric price is decreasing in n (more competi-
tion leads to lower prices) and increasing in � (more
satiation-sensitive customers will see higher prices).
Because of the multiplicative interaction in our attrac-
tion model, the symmetric price (8) is the same as
in the original CDS model without satiation effects
(see Equation (7.9) in Anderson et al. 1992). Note that
when p0 < �, the symmetric price is lower than the
value in (8).

It can be shown that as �i increases, pp-only
i decreases

whereas pp-only
j increases for j 6= i. Therefore, a firm that

sells a product with high (low) satiation but fails to
take it into account—e.g., uses the CDS model without
satiation—will tend to overprice (underprice). Note
that this fact hinges on the attraction form of the
dollar market share (see Equation (5)). Indeed, when
�i increases, the consumer spends more on the other
products and the attraction form makes sure that
the budget remains balanced. Therefore, there is no
income effect, and the pure substitution effect forces
firm i to lower its price in equilibrium. If pixi� does
not have an attraction form, then some of the consu-
mer’s income might remain unused after substitution
takes place. This provides incentives to all firms,
including firm i, to increase prices. For quadratic util-
ity, we observed that the net effect is that p

p-only
i also

increases, so if firm i ignored satiation it would sys-
tematically underprice.

4.2. Product Decisions Only
Knowing that satiation has a strong influence on equi-
librium prices and market shares, retailers will find
quite valuable the possibility of choosing the type
of product offered so as to reduce the satiation that
it generates on consumers. For example, in apparel,
a retailer might choose to increase the frequency at
which the stores are being refreshed because this

improves the perception of novelty on the customer.
Similarly, in the food service industry, a restaurant
might decide to change the menu more often. Another
example are innovation-driven industries, e.g., smart-
phones, where obsolescence drives product satiation
and prices remain relatively stable across product
generations.

To analyze product decisions, we allow the retailers
to choose from a continuum of products that spans
the entire range of possible satiation retention factors,
so the strategy space for �i is the interval 60117. The
operational cost incurred by firm i when it offers a
product with a satiation factor �i, is denoted ki4�i5.
To make the problem meaningful, ki should satisfy
the following properties. First, ki should be decreas-
ing in �i because it is more expensive to offer a less
satiating product. Second, ki should be convex in �i

to represent that each marginal reduction in the sati-
ation factor becomes increasingly harder to achieve.
Third, lim�i→0 ki4�i5= �, meaning that the operational
requirements to offer a nonsatiating product is pro-
hibitively expensive. To simplify the analysis but still
offer modeling flexibility, we consider the following
functional form for ki:

ki4�i5=
fi4�

−gi
i − 15
gi

≥ 01 for i = 11 0 0 0 1n1 (9)

where the parameters fi1gi ≥ 0 can be firm depen-
dent.4 Note that by taking the limit of gi → 0,
ki4�i5 tends to −fi ln4�i5. The profit of retailer i now
becomes

�i4pi1�i1 p−i1�−i5=
pi − ci
pi

mi�W − ki4�i50 (10)

In practice, product decisions are usually more dif-
ficult to change than prices, but in some industries
with strong price focus (e.g., affordable fashion or the
other examples given above), price is taken as given
and only product decisions are used. We are thus inter-
ested in finding the Nash equilibria in the product
strategy space, which exists per the following theorem.

Theorem 3. There exists a pure-strategy Nash equilib-
rium 4�

�-only
1 1 0 0 0 1�

�-only
n 5 in the product-only game, which

is characterized by

pi − ci
pi

mi�41 −mi�5=
fi

W�4�i5�
gi
i

1

where �4�i5 2= −�ib
′4�i5/b4�i50 (11)

If p0 is sufficiently low, then mi� ≤ 1/2, for i = 11 0 0 0 1n1
and the equilibrium is unique.

4 A numerical study for other functional forms that satisfy the
assumptions gave the same results. Tests for quadratic and expo-
nential costs such that ki405 < � were also positive. However, for
linear costs, the profit function can have local optima, indicating
that some notion of strict convexity for ki4�i5 is needed for our
results to hold.
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Uniqueness can be guaranteed when in equilibrium
mi� ≤ 1/2, for i = 11 0 0 0 1n1 (note that Allon et al. 2010
have the same condition for price-only competition).
Otherwise, there may be multiple equilibria and in
each there is at least one firm with more than 50%
market share. When firms are symmetric (all equal)
and there is no outside good (p0 = �), then there is
a unique symmetric equilibrium such that �4�

�-only
i 5 ·

4�
�-only
i 5g = 4f /W54p/4p − c554n2/4n − 155 for all i.

Hence, the symmetric product generates more sati-
ation as n increases (more competition leads to less
investment to increase market share). Interestingly,
in contrast with §4.1, the symmetric satiation level
depends on the prevailing prices, even when p0 = �.
When the price is taken as the one in (8), the corre-
sponding satiation factor is determined by

�4�
�-only
i 54�

�-only
i 5g =

f

W

n4n− 1 +�5

�4n− 15
0 (12)

4.3. The Price-Product Equilibrium
We now consider the general situation when firms can
change both price and product (i.e., satiation retention
factors). We are interested in finding the Nash equilib-
ria in the two-dimensional strategy space: these equi-
libria are defined as 44peq1 1�

eq
1 51 0 0 0 1 4p

eq
n 1�

eq
n 55 such that

no retailer i can improve its profit �i by changing uni-
laterally 4pi1�i5 away from 4p

eq
i 1�

eq
i 5. We first focus on

finding the best-response function to the competitors’
choice of 4p−i1�−i5. Though the profit function (10) is
not concave, it is still well behaved, which leads to
the following proposition.

Proposition 2. For any p−i1�−i, �i is maximized at
the unique pBRi 1�BR

i < 1 that satisfy Equations (7) and
(11). As a result, pBRi 1�BR

i are continuous with respect to
p−i1�−i. Moreover, pBRi is always increasing in pk and in
�k, k 6= i. In contrast, given �k, �

BR
i is first decreasing and

then increasing in pk; given pk, �
BR
i is first decreasing and

then increasing in �k.

Proposition 2 characterizes the best response of i in
both the price and product dimensions. It also shows
that firm i always has an incentive to increase its price
when its competitors are less aggressive (higher pk
or �k). On the other hand, the optimal product choice
is nonmonotonic in the competitors’ actions. In fact,
it has an inverted U -shape. This means that when
it comes to satiation, a firm that has enough market
share (facing high pk or �k) can afford to match its com-
petitors’ actions. Otherwise, it is better to react in the
opposite direction because there is a larger benefit in
cutting operational costs. This is the best response to
unilateral changes. The outcome in equilibrium is dis-
cussed in the next two sections after we establish its
existence.

We use the continuity of firm i’s best response to
prove that a pure-strategy Nash equilibrium exists

in the two-dimensional game between retailers. This
result should not be taken for granted, because in
many competitive models on price and product an
equilibrium in pure strategies fails to exist (this is
mostly the case with the Hotelling–Lancaster model;
see Anderson et al. 1992). Note also that because we
consider dollar market shares and the operational cost
ki4�i5, the equilibrium results in Federgruen and Yang
(2009) do not apply here.

Theorem 4. There exists a unique pure-strategy Nash
equilibrium in the n-retailer game, n≥ 2.

4.3.1. The Symmetric Price-Product Oligopoly.
Consider the symmetric game in which all retailers
share the same cost parameters: ci = c, fi = f , gi = g.
The following theorem characterizes analytically the
symmetric equilibrium.

Theorem 5. In the symmetric game the unique pure-
strategy equilibrium is symmetric and such that p

eq
i =

psym = p∗4�sym5 and �
eq
i = �sym = �∗4�sym5 for i =

11 0 0 0 1n, where

p∗4�5=
c�

1 −�

(

1
�

+
1
�

)

and �∗4�5 is such that

�4�5�g =
f

W
41 +�5

(

1
�

+
1
�

)

1

(13)

and �sym is the unique solution of the single dimension
fixed point equation

�= n− 1 +
1

b4�∗4�55

(

p∗4�5

p0

)1/�−1

0 (14)

From the theorem, several observations can be
made. First, when all firms have the same cost parame-
ters, the unique equilibrium is symmetric. Second, the
computation of the equilibrium reduces to solving a
single-dimensional fixed point equation. Third, with-
out an outside good (p0 = �), the theorem implies that
� = n − 1 and psym is equal to the symmetric price in
Equation (8) for price-only competition (which in turn
is equal to the symmetric price in the CDS model).
Similarly, the resulting satiation factor �sym is equal
to the symmetric satiation factor in Equation (12).
In other words, without an outside good, the choice of
price and product decouple because each firm knows
that its market share will be 1/n. Interestingly, when
an outside good is present, the decoupling no longer
occurs because then the choice of p depends on �, and
vice versa.

Finally, from Equations (13) and (14) we can derive
comparative statics, which are summarized in the fol-
lowing corollary.

Corollary 1. Let 4psym1�sym5 be the symmetric equi-
librium. For n > 1, if any of the following changes in the
parameters occurs—↑ n1↑ f 1↑ g1↓W , or ↓ p0—then the
equilibrium price decreases and the equilibrium level of
satiation increases (↓ psym and ↑ �sym).
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As expected, an increase in costs (higher f or g)
implies an increase in the satiation factor offered,
which in turns requires the firms to decrease the price.
The same occurs as the market size W or the price of
the outside good p0 decreases or when the number of
firms n> 1 increases. This last observation is interest-
ing because it means that more competition leads to
more emphasis on price and less on product “fresh-
ness,” which occurs because consumers can now sat-
isfy their need for variety by consuming across a larger
number of retailers. Therefore, in saturated markets,
and in the absence of habituation effects, firms will
stick to standard offerings and consumers will con-
sume a bit of each every period, just like in a food
court.

4.3.2. The Asymmetric Price-Product Duopoly.
We now focus on the duopoly and focus on under-
standing how differences in operational capabilities to
offer low-satiation products affect the equilibrium out-
come. To focus on the satiation aspect, we assume as
before that firms have identical production costs c1 =

c2 = c. In contrast, we assume that f1 ≤ f2 and g1 ≤ g2;
i.e., retailer 1 can offer a product with a given satia-
tion factor at a lower operational cost than retailer 2
can. Therefore, retailer 1 has an operational advantage
and will be prone to offer lower-satiation products. For
example, in apparel, retailer 1 might be a more flex-
ible firm that can refresh its store frequently without
incurring high costs, such as Zara or H&M; retailer 2
might be a traditional retailer with a more rigid sup-
ply chain that makes new product introduction oper-
ationally more costly. We can present a result analog
to Theorem 5 for the asymmetric duopoly.

Theorem 6. Let c1 = c2 = c. In the asymmetric duopoly,
the unique pure-strategy Nash equilibrium is asymmetric:
if f1 < f21g1 ≤ g2 or f1 ≤ f21g1 < g2, the equilibrium is
such that �eq

1 <�
eq
2 and p

eq
1 > p

eq
2 . In addition, firm 1’s equi-

librium profit �eq
1 is increasing in f21g2 and decreasing in

f11g1; firm 2’s equilibrium profit �eq
2 is increasing in f11g1

and decreasing in f21g2.

The theorem shows that the unique equilibrium is
asymmetric in which retailer 1 offers a less satiating
good. Retailer 1 can thus also charge higher prices and
reap higher profits. In contrast, retailer 2 makes lower
profits because of its inability to reduce satiation and
to attract sales; it is thus forced to emphasize a more
aggressive price position.

Theorem 6 also provides some insights regarding
the competitive advantage derived from a lower cost
structure fi1gi. Consider two cost structures or types
denoted H and L for high and low, respectively, with
fL ≤ fH and gL ≤ gH and one of the inequalities being
strict. Denote �T1T2 the equilibrium profits achieved by
a retailer of type T1 competing against a firm type T2.
From Theorem 6 we have that a retailer’s equilibrium

profit is decreasing in its own cost. This implies that
�LH ≥ �HH and �LL ≥ �HL. In other words, regardless
of the competitor’s type, a firm is better off with a low
cost structure. On the other hand, Theorem 6 shows
that a firm’s profits are increasing in the competitor’s
cost, which implies that �LH ≥ �LL and �HH ≥ �HL.
Put differently, a firm is worse off competing against a
type-L retailer, regardless of its own type. These obser-
vations are summarized in the following corollary.

Corollary 2. Let fL ≤ fH and gL ≤ gH . The competi-
tive scenarios can be ordered as follows:

�LH
≥ max8�LL1�HH 9≥ min8�LL1�HH 9≥�HL0 (15)

Corollary 2 shows that under price and product
competition, if firms are allowed to select their type,
then choosing L is a dominant strategy, as long as
the production costs remain identical for both firms.
In that case, the equilibrium profits would be �LL.
Even when �HH > �LL, the firms have incentives to
deviate unilaterally and both end up making lower
profits, just as in the Prisoner’s Dilemma (how �HH >
�LL can occur is discussed later). Interestingly, the
order in (15) can change when there is product-only
competition. Indeed, it is possible that �HL ≥ �HH ,
which means that a type H firm would prefer to face
an asymmetric type L competitor. This observation
was confirmed numerically in Caro and Martínez-de-
Albéniz (2009), and it can happen when the type H
firm responds to the lower satiation product of the
type L firm by increasing its own product satiation
(recall from Proposition 2 that the best response in �−i

has an inverted U-shape), so the cost savings from less
rotation for the type H outweigh the decrease in mar-
ket share. This situation cannot happen under prod-
uct and price competition because then the type H
firm must also lower its price so revenues are hurt
twice—through a lower market share and a decreased
price—which is why �HH ≥�HL in Corollary 2.

Finally, it is worth noting that the profit associated
with the symmetric duopoly is not necessarily mono-
tonic in f . Although this may seem surprising, it can
be explained because the higher cost might reduce the
intensity of competition, rendering higher profits to
the firms. In particular, we can apply Theorem 5 and
find that �sym = 1 (because p0 = � and n = 2). This
results in psym = 41+�5/41−�5 and �sym being increas-
ing in f . As a result the revenue is independent of f ,
whereas the fixed cost is f times a decreasing func-
tion of f . This last product is not monotonic in f .
Figure 2 illustrates the symmetric profit as a function
of f , with the x-axis presented in log-scale. It can be
seen the curve is first decreasing, then increasing and
finally decreasing again. Though there are cases in
which both firms would be better off having a higher
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Figure 2 Symmetric Equilibrium Profits as a Function of the
Operational Cost Parameter f
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cost structure, i.e., �HH > �LL, if process improve-
ments move the market equilibrium “from peak to
peak” in Figure 2, then despite the “product war”
both firms would end up with higher profits. This
nonlinear behavior contrasts with price wars in which
profits always decrease.

4.4. The Impact of Ignoring Product Satiation
One of the main contributions of this paper is incor-
porating satiation effects into to a competitive model.
In particular, we obtain market shares that generalize
the classic CDS model by adding a product dimension
captured through a multiplicative term that depends
on the satiation factors �i1 i = 11 0 0 0 1n. Given this new
feature, it is natural to ask what happens when a firm
ignores it. That is, how much should a firm care about
incorporating satiation effects into its product deci-
sions? In this section we answer this question, which
in turn helps us to better understand the underlying
forces in the model.

Consider the symmetric duopoly. As before, by
symmetry we mean that both firms have the same
cost structure. Suppose that firm 2 does not act strate-
gically in terms of its product and it believes that
competition is only based on prices. In other words,
firm 2 ignores satiation and prices according to the
CDS model, which again we denote pCDS. In contrast,
firm 1 is forward looking and responds strategically
in terms of product and price according to Proposi-
tion 2. To sharpen the insights, we ignore the outside
good (p0 = �), but at the end we discuss the impact
when it is brought back in.

Firm 1 follows its best response knowing that firm 2
will offer a product with a given satiation level �2
and that it will set the price to pCDS, regardless of
�2. Because firm 2 does not act strategically with
respect to product satiation, �2 must be treated as a
parameter, and therefore we present our results as a
function of �2 ∈ 60117. Figure 3 shows the price and

Figure 3 Price and Product Outcome in Equilibrium When Firm 1
Optimizes Both Dimensions While Firm 2 Ignores
Satiation and Follows the CDS Model
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product outcome in equilibrium for an illustrative
instance. From Equation (8), firm 2 prices its product
at pCDS = 3, which corresponds to the horizontal line
in the top graph. In the bottom graph, firm 2’s prod-
uct satiation is represented by the 45 degree line. Note
that in both graphs the curves cross at �2 = �sym =

00224, where �sym is computed from Equation (12).
The fact that firm 1’s best response is very flat means
that selecting �sym is a safe bet for a firm that internal-
izes satiation. In other words, it can choose its satia-
tion level without worrying too much about whether
the competitor will react strategically.

Figure 4 shows the firm profits for the same prob-
lem parameters as in Figure 3. The left-hand graph
shows the absolute profits �11�2. As a reference, we
include an horizontal line with the symmetric profit
�sym = 00184, which corresponds to the profit the
firms would make if both were strategic in price and
product. Without an outside good, both firms achieve
�sym when �2 = �sym because the price in the symmet-
ric game psym is equal to pCDS; see §4.3.1. For �2 <�sym,
both firms have profits lower than �sym, meaning that
both are worse off compared to the fully strategic
game. However, when �2 is not too low, firm 2 does
better than firm 1. Indeed, by being myopic, firm 2
commits to �2 < �sym. That forces firm 1 to lower its
price, which undermines its profits.

Interestingly, when �2 is slightly greater than �sym,
firm 2 can have profits (slightly) greater than �sym.
For instance, for �2 = 00313 we have that �2 is 1.6%
higher than �sym. In other words, there is a small
range where firm 2 benefits from committing (myopi-
cally) to the price from the CDS model. The right-
hand graph in Figure 4 plots the profit ratio �1/�2 −1,
which represents firm 1’s profit advantage of having
a competitor that ignores satiation. The graph shows
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Figure 4 Absolute (Left) and Relative (Right) Profits When Firm 1 Optimizes Both Dimensions While Firm 2 Ignores Satiation and Follows the
CDS Model
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that despite the price and product commitments by
firm 2, it is firm 1 that benefits the most and by a
large amount. In particular, firm 1 substantially out-
performs firm 2 when the satiation level �2 is high.
This in part explains the situation of apparel retailer
the Gap, which has halved its market share from 2003
because of its “dull” clothes, whereas fast-fashion
retailers like H&M and Forever 21 have thrived dur-
ing the same time period (Peterson 2011). Firm 1 in
Figure 4 also does better when �2 is extremely low,
but this is because of our assumption that offering
minimal satiation is prohibitively expensive from an
operational standpoint; see Equation (9).

Figures 3 and 4 do not consider an outside good
(p0 = �). When p0 < �, the presence of an outside
good intensifies competition and both firms must
lower their prices. In terms of product, the best
response of firm 1 is rotated clockwise, so its product
satiation is shifted upward for low values of �2 and
downward for high values. Note that with an outside
good, pCDS 6= psym and any benefits firm 2 could reap

Figure 5 Absolute (Left) and Relative (Right) Profits When There Is an Outside Good and Firm 1 Optimizes Both Dimensions While Firm 2 Ignores
Satiation and Follows the CDS Model
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from its price commitment tend to disappear. This is
shown in Figure 5 where we plot the same graphs as
in Figure 4 but with p0 = 5. First, observe that the prof-
its are lower for both firms. Second, firm 2 is worse
off compared to the symmetric equilibrium for all val-
ues of �2, whereas firm 1 is still better off for a wide
range. Third, the profit ratio in the right-hand graph
continues to show a large and wide profit advantage
for firm 1. In summary, ignoring satiation effects can
be even more detrimental under the presence of an
outside good.

5. Conclusions
In this paper, we have studied the impact of satia-
tion effects on retail competition. When a customer
becomes satiated, she spends a larger fraction of her
budget on products that are “fresher,” i.e., that gener-
ate less satiation. Using a discounted utility approach
that accounts for satiation, we find how a consumer
should optimally spend her budget among a set of
competing retailers. This provides a relatively simple
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demand function with which price and product com-
petition can be analyzed. We show that a competitive
equilibrium exists and we characterize it for the sym-
metric oligopoly and the asymmetric duopoly case.

We consider our work to be a first step in adding
behavioral aspects in competitive models. We incor-
porate satiation effects that induce a consumer to
diversify consumption and that provide an alterna-
tive explanation for the coexistence of multiple firms
engaged in horizontal competition. We also show that
ignoring the product dimension in competition may
lead to wrong pricing decisions and a large profit
reduction. To charge a higher price or to attract a larger
market share, the retailer should strive to offer a prod-
uct that satiates less, which in turn justifies invest-
ments in operational improvements to keep costs
under control. This illustrates how product decisions
are beneficial to retailers that have developed a cost
advantage to refresh their stores more often, as in the
case of fast-fashion retailers like Zara or H&M.

The model developed here can be extended in a
number of directions. First, we focus here on estab-
lishing what satiation factor firms should offer that
corresponds to selecting the appropriate product.
Of course, this is a simplified, high-level view of prod-
uct choice. In particular, we do not try to explain the
mechanisms by which firms can affect the satiation
factor. It would thus be interesting to explore how
satiation factors are determined, which may depend
on industry-specific factors. For example, in apparel,
satiation is likely to depend on the customer percep-
tion of store “freshness.” This can be driven by store
or product assortment changes. It would helpful to
understand how each operational choice (frequency of
product introductions, duration of a product in store,
etc.) affects satiation and provide recommendations on
how retailers should shape store operations to mini-
mize satiation and hence maximize sales. Second, the
market share model derived from the consumer’s util-
ity maximization problem is deterministic. In prac-
tice sales are affected by demand uncertainty, and
hence there may be costs associated with managing it
(e.g., safety stock). Including them will introduce scale
economies in our model, thereby affecting competitive
outcomes. How these change price and product deci-
sions is an interesting question to be addressed. Third,
the demand model derived from customer’s maxi-
mization depends on two competitive decisions: price
and satiation factor. In practice, other elements impact
the customer’s choice, such as habituation (decision
analysts have shown) or the vertical differentiation
dimension of product choice, in which some products
might be perceived as having better quality than oth-
ers. A relevant question is how these other behavioral
elements can be incorporated into retail competition
models.
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Appendix. Proofs

Proof of Theorem 1
From the assumptions, V 4y5 is concave. This can be veri-
fied by induction and a limiting argument on T . Hence, the
Karush–Kuhn–Tucker conditions are sufficient for optimal-
ity in (SP-R). Therefore, if 4x�1y�5 is an optimal solution of
(SP-R), it must satisfy

v′

i4zi�5+ ��i

¡V

¡yi
4��z�5=�pi for i = 01 0 0 0 1n1 (16)

where � ensures that
∑n

i=0 pizi� = W +
∑n

i=0 piyi�. In other
words, � ensures that the budget is binding. From
the envelop theorem applied to (SP-R) we have that
4¡V /¡yi54��z�5=�pi. Substituting this in (16) and rearrang-
ing terms yields Equation (4). Because (4) has a unique
solution, the optimum of (SP-R) is unique. Moreover, from
Proposition 1 we have that the optimal policy in the cus-
tomer’s problem (CP) must converge to the unique opti-
mum of (SP-R). Therefore, the optimal stationary solution
of (CP) is given by Equation (4) as well. The relationships
yit+1 = �izit and xit = zit − yit yield the expressions for yi�
and xi�, respectively, which completes the proof. �

Proof of Theorem 2
To prove existence and uniqueness of equilibrium, we
first calculate each retailer’s best-response function. Since
41/�i5¡�i/¡pi = 41/pi56ci/4pi−ci5−41/�−1541−mi�57, and the
expression in brackets is decreasing in pi, �i is first increas-
ing and then decreasing. Hence, �i is quasi-concave in pi
and continuous in p−i. Existence of equilibrium follows
from Theorem 1.2 in Fudenberg and Tirole (1991). Any equi-
librium thus satisfies each retailer’s optimality condition,
i.e., Equation (7).

The equilibrium is in fact unique. Indeed, consider two
distinct equilibria 8pAi 9 and 8pBi 9, with corresponding attrac-
tions 8aAi 9 and 8aBi 9 and market shares 8mB

i�9 and 8mB
i�9. From

i’s optimality equation, mA
i� ≤ mB

i� if and only if pAi ≤ pBi ,
which implies aAi ≥ aBi . As a result, all retailers that have a
larger market share in B also have a smaller attraction, and
vice versa. This is a contradiction unless mA

i� = mB
i�, and

hence the equilibrium is unique. �
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Proof of Theorem 3
First, for 0 <�< 1, � as defined in the theorem can be writ-
ten as

�4�i5 2=−
b′4�i5�i

b4�i5
=

1
1−�i

−
1
�

[

1
1−��i

−
1−�

1−��1−�
i

]

1 (17)

and it can be shown to be nonnegative and increasing. The
profit function (10) can also be expressed as

�i4pi1�i1p−i1�−i5

=
pi−ci
pi

W

1+A−ip
1/�−1
i /b4�i5

−
fi4�

−gi
i −15
gi

1 (18)

where A−i 2=
∑

k 6=i a4pk1�k5. We have that

¡�i

¡�i

=
�4�i5

�i

[

−
pi − ci
pi

WA−ip
1/�−1
i /b4�i5

41 +A−ip
1/�−1
i /b4�i55

2
+

fi�
−gi
i

�4�i5

]

0

Consider �i where ¡�i/¡�i = 0, i.e., Equation (11). Since
gi ≥ 0,

¡2�i

¡�2
i

=
�4�i5

�i

[

pi − ci
pi

WA−ip
1/�−1
i /b4�i5

41 +A−ip
1/�−1
i /b4�i55

2

(

−
b′4�i5

b4�i5

)

·

(

−1+
2A−ip

1/�−1
i /b4�i5

1+A−ip
1/�−1
i /b4�i5

)

−
figi�

−1−gi
i

�4�i5
−

fi�
−gi
i �′4�i5

�4�i5
2

]

=
�4�i54pi − ci5

�ici

WA−ip
1/�−1
i /b4�i5

41 +A−ip
1/�−1
i /b4�i55

2

·
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−
b′4�i5

b4�i5

)(

1−
2

1+A−ip
1/�−1
i /b4�i5

)

−
gi

�i

−
�′4�i5

�4�i5

]

≤
4pi − ci5

�2
i ci

WA−ip
1/�−1
i /b4�i5

41 +A−ip
1/�−1
i /b4�i55

2
6�4�i5

2
−�i�

′4�i570

Since

�4�i5
2

=

(

1
1 −�i

)2

+
1
�2

[

1
1 − ��i

−
1 −�

1 − ��1−�
i

]2

−
2

�41 −�i5

[

1
1 − ��i

−
1 −�

1 − ��1−�
i

]

and

�i�
′4�i5 =

�i

41 −�i5
2

−
1
�

[

��i

41 − ��i5
2

−
41 −�52��1−�

i

41 − ��1−�
i 52

]

= −
1

1 −�i

+

(

1
1 −�i

)2

+
1
�

[

1
1 − ��i

−
41 −�52

1 − ��1−�
i

]

+
1
�

[(

1
1 − ��i

)2

−

(

1 −�

1 − ��1−�
i

)2]

1

we have

�4�i5
2
−�i�

′4�i5 =
1
�2

[

1
1 − ��i

−
1 −�

1 − ��1−�
i

]2

−
2

�41 −�i5

[

1
1 − ��i

−
1 −�

1 − ��1−�
i

−
�

2

]

−
1
�

[

1
1 − ��i

−
41 −�52

1 − ��1−�
i

]

−
1
�

[(

1
1 − ��i

)2

−

(

1 −�

1 − ��1−�
i

)2]

≤ 00

This is true because 41/�541/41−��i5−41−�5/41−��1−�
i 55

is increasing from 1 to 1/41 − �5, and hence always larger
than 1/2, and because

1
1 − ��i

+
41 −�52

1 − ��1−�
i

+

(

1
1 − ��i

)2

−

(

1 −�

1 − ��1−�
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≥
1
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1
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][

�+
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+
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since

�+
1 −�2

1 − ��1−�
i

≥ �+
1 −�

1 − ��1−�
i

≥
1 −�

1 − ��i

0

As a result, ¡2�i/¡�
2
i is negative, and hence the profit

function of retailer i has a unique maximizer. It is contin-
uous on �−i, which guarantees existence of equilibrium in
pure strategies.

Finally, to provide a condition for uniqueness, we notice
that Equation (11) relates mi� and �i: �i is increasing
in mi� when mi� ≤ 1/2, and is decreasing otherwise.
Hence, if mi� ≤ 1/2, then A 2=

∑n
k=0 a4pk1�k5 is decreas-

ing in mi�. Assume that there are two distinct equilib-
ria, 4p1

k1�
1
k 5 and 4p2

k1�
2
k 5, which result in market shares

4m1
1�
1 0 0 0 1m1

n�5 and 4m2
1�
1 0 0 0 1m2

n�). If for i = 11 0 0 0 1n, m1
i� ≤

1/2, then m1
1�

<m2
1�

implies that A1 =
∑n

k=0 a4p
1
k1�

1
k 5 >A2 =

∑n
k=0 a4p

2
k1�

2
k 5. This implies that for i m1

i� <m2
i�. However,

1 −
∑n

k=1 m
1
k� = m1

0�
= a4p0105/A1 < a4p0105/A2 = m2

0�
=

1 −
∑n

k=1 m
2
k� < 1 −

∑n
k=1 m

1
k�. This is a contradiction. The

same argument holds when m1
1�

>m2
1�

. Hence, the equilib-
rium must be unique when mi� ≤ 1/2 for i = 11 0 0 0 1n. This
occurs for example when p0 is low enough, in which case
m0� ≥ 1/2. �

Proof of Proposition 2
When �= 0, customers are indifferent to satiation and hence
the firms engage in price (Bertrand) competition; therefore,
the best response is to set pi = max8ci1minj 6=i pj9 (zero gross
margin unless the retailer is the lowest cost provider) and
�i = 1 (no effort in reducing satiation). This is also the
unique solution to Equations (7) and (11).

For 0 < � < 1, consider the profit expression from
Equation (18). We start by maximizing �i with respect to
pi. This implies that Equation (7) is satisfied, given �i. This
first-order condition can be rewritten as

41 −�5p1/�−1
i

�

(

pi
ci

−
1

1 −�

)

=
b4�i5

A−i

0 (19)

Denote p̂i4�i5 the solution to Equation (19) given �i and
A−i. One can observe that p̂i4�i5 ≥ ci/41 −�5. It can be ver-
ified that b is nonincreasing in �i, and hence p̂i4�i5 is non-
increasing in �i. Thus, lower satiation allows the retailer to
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charge higher prices. Furthermore, implicit differentiation
of Equation (19) implies

(

1 −�

�p̂i
+

1
p̂i − 4ci/41 −�55

)

p̂′

i =
b′4�i5

b4�i5
=

−�4�i5

�i

≤ 00

Using the one-to-one relationship between satiation factor
and optimal price p̂i, we can now maximize the profit with
respect to �i. Let

�̂i4�i5 = �i4p̂i4�i51�i1 p−i1�−i5

= W

(

1 −
ci

41 −�5p̂i

)

−
fi4�

−gi
i − 15
gi

1

and hence

d�̂i

d�i

=
Wcip̂

′
i

41 −�5p̂2
i

+
fi

�
1+gi
i

= −
1
�i

(

Wci�i4−p̂′
i5

41 −�5p̂2
i

−
fi
�
gi
i

)

= −
1
�i

(

Wci�4�i5

41−�5641−�5/4�p̂i5+1/4p̂i−ci/41−�557p̂2
i

−
fi
�
gi
i

)

(20)

Interestingly,

�4�i5

641 −�5/4�p̂i5+ 1/4p̂i − ci/41 −�557p̂2
i

is nondecreasing in �i, because p̂i is nonincreasing and

�

41 −�5/4�p̂i5+ 1/4p̂i − ci/41 −�55

is nondecreasing in �i. This is indeed true because some
algebra yields that

�i641 −�5/4�p̂i5+ 1/4p̂i − ci/41 −�557

�2

·
d

d�i

(

�i4�i5

41 −�5/4�p̂i5+ 1/4p̂i − ci/41 −�55

)

=
�i41/41−�i5

2 −4�/�561/41−��i5
2 −41−�52�−�

i /41−��1−�
i 5275

41/41−�i5−41/�561/41−��i5−41−�5/41−��1−�
i 5752

−
41 −�5/4�p̂2

i 5+ 1/4p̂i − ci/41 −�552

641 −�5/4�p̂i5+ 1/4p̂i − ci/41 −�5572
0

A simple functional analysis shows that

641 −�5/4�p̂2
i 5+ 1/4p̂i − ci/41 −�5527

/641 −�5/4�p̂i5+ 1/4p̂i − ci/41 −�5572 ≤ 1

for all p̂i and all parameters and that

4�i41/41 −�i5
25− 4�/�5

·61/41−��i5
2 −41−�52�−�

i /41−��1−�
i 5275/41/41−�i5−41/�5

· 61/4−��i5− 41 −�5/41 − ��1−�
i 5752

≥ 1

for all �i and all parameters.
As a result, �̂i is first increasing and then decreasing, i.e.,

quasi-concave. As a result, the maximizer of �i is unique
and can be defined by the two first-order conditions. Using

Equation (19), the first-order condition in Equation (20) is
equivalent to

�W

1 −�

ci4pi − ci/41 −�55

pi4pi − ci5
= −

b4�i5fi

b′4�i5�
1+gi
i

≥ 00 (21)

As A−i increases, Equation (21) is unchanged, but the
right-hand side of Equation (19) decreases. Note that
Equation (21) provides a relationship where �i is first
decreasing in pi and then increasing in pi. This is true
because 1/4�4�i5�

gi
i 5, where � is defined in Equation (17), is

decreasing and ci4pi − ci/41 − �554pi4pi − ci55 is first increas-
ing and then decreasing. As a result, when A−i is small,
pBRi increases and �BR

i decreases with A−i; when A−i is large,
both pBRi and �BR

i increase with A−i. The sensitivity with
respect to pk1�k is derived using that A−i is decreasing in pk
and �k. �

Proof of Theorem 4
For all i, we know that Equation (21) leads to a best-
response �i that is bounded below by a positive value
�min > 0, which is independent of A−i. Consider the price
equilibrium of the price-only game in which all retailers set
�i = �min. Let pmax < � be the maximum price in this equi-
librium across all retailers.

Given �min and pmax, we claim that if all competitors
choose 4�i1 pi5 ∈ 6�min117× 601 pmax7, then i will choose a best
response in this set, too. Indeed, when competitors choose
such strategies, A−i ≥ 4n − 15b4�min54pmax51−1/� + p1−1/�

0 > 0.
We know from the construction of �min that i will choose �i

higher than �min. We also know that retailer i will set a price
pi lower than pmax because the solution pi of Equation (19)
decreases in �i and in A−i, and pmax was constructed so as
to be the equilibrium in which all players set �min ≤ �i.

Consider the multivariate real function F 2 è → è, where
è≡ 4601 pmax7× 6�min1175n, and for � ∈è, the ith component
of F 4�5 is equal to 4pBRi 1�BR

i 5. Because è is compact and F
is continuous (from Proposition 2), Brouwer’s fixed point
theorem implies that F must have a fixed point. This fixed
point is a pure-strategy Nash equilibrium.

We can now prove uniqueness. The equilibrium condi-
tions from Equations (7) and (11) provide a one-to-one map-
ping between mi� and 4pi1�i5. Omitting the subindices,

p
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�4�5�g

=
f

W

1
m

(

1 −�

�
+

1
1 −m

)

0

Hence,
1
p

dp

dm
=

1/41 −m52

41 −�5/�+ 1/41 −m5

and
d�

dm

(

�′

�
+

g

�

)

= −
1
m

+
1/41 −m52

41 −�5/�+ 1/41 −m5
0

Note that p is increasing in m and � is first decreas-
ing and then increasing in m. Also, A 2=

∑n
k=0 a4pk1�k5 =

p1−41/�5b4�5/m is decreasing in m because

−
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This is negative because ��′/�2 +g/� ≥ ��′/�2 ≥ 1 (see the
proof of Theorem 3). Hence, A is decreasing in mi�.

Assume that there are two distinct equilibria 4p1
k1�

1
k 5

and 4p2
k1�

2
k 5, which result in market shares 4m1

1�
1 0 0 0 1m1

n�5
and 4m2

1�
1 0 0 0 1m2

n�5. Let A1 =
∑n

k=0 a4p
1
k1�

1
k 5 and A2 =

∑n
k=0 a4p

2
k1�

2
k 5. If m1

1�
< m2

1�
, then we know that A1 > A2

and hence for all k, m1
k� < m2

k�. However, 1 −
∑n

k=1 m
1
k� =

m1
0�

= a4p0105/A1 < a4p0105/A2 = m2
0�

= 1 −
∑n

k=1 m
2
k� < 1 −

∑n
k=1 m

1
k�. This is a contradiction and hence the equilibrium

must be unique. �

Proof of Theorem 5
From Equations (19) and (21), in a symmetric equilibrium
4p1�5, we must have that

41 −�5p1/�−1

�

(

p

c
−

1
1 −�

)

=
b4�5

p1−1/�
0 + 4n− 15p1−1/�b4�5

=
p1/�−1
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0 541/b4�55+ 4n− 15

and

c4p− c/41 −�55

p4p− c5

��4�5�g

1 −�
=

f

W
0 (22)

We claim that these two equations have a unique solution.
Define Z = 41−�5p/c−1 and Z0 = 41−�5p0/c−1. The equa-
tions above can be expressed as

Z

�

[(

Z+ 1
Z0 + 1

)1/�−1 1
b4�5

+ 4n− 15
]

= 1 and

�Z�4�5�g

4Z+ 154Z+�5
=

f

W
0 (23)

These two equations clearly define a unique � for
each value of 0 ≤ Z ≤ Zmax, where Zmax is defined by
4Zmax/�5644Zmax +15/4Z0 +1551/�−1 +4n−157= 1. Denote these
values of � as �14Z5 and �24Z5, solutions to the first and sec-
ond equation in (23), respectively. At equilibrium, �14Z5 =

�24Z5. We claim that this only occurs for one value of Z > 0,
provided that W/f > 1/4�4Z0 + 151/�−15 (when the cost is
low enough); otherwise, the only equilibrium is Z = 01� =

1, which implies that each retailer makes zero profit.
Indeed, for Z ≈ 0, a Taylor approximation implies that

�41 −�14Z554Z0 + 151/�−1

Z
−→
Z→0

1 and

f 41 −�24Z55

ZW
−→
Z→0

1

and hence �14Z5 > �24Z5 when W/f > 1/4�4Z0 + 151/�−15. If
Z becomes high enough, �14Z5 reaches zero, and �24Z5 is
increasing in Z and approaches one. As a result, �24Z5 >
�14Z5 for a large enough Z. This implies that there must
be at least one solution to (23). Applying Theorem 4 yields
that the unique equilibrium is symmetric. Let � = n − 1 +

4p/p05
1/�−11/b4�5 and rearrange the terms in (22) to obtain

Equations (13) and (14), which completes the proof. �

Proof of Theorem 6
Consider f2 > f1 and g2 ≥ g1. In the equilibrium, assume
first that p1 ≤ p2. From Equation (7), we must have
that m1� ≤ m2�. Hence, p1−1/�

1 b4�15 ≤ p1−1/�
2 b4�25 and thus

�1 ≥ �2. At the same time, letting A =
∑2

k=0 a4pk1�k5,
Equation (11) (using that 4pi − ci541 − mi�5 is constant)
implies that p−1/�

1 b4�15�4�15�
g1
1 = 41 − �5f1A/�W < 41 − �5 ·

f2A/4�W5 = p−1/�
2 b4�25�4�25�

g2
2 . But because b4�5�4�5�gi

is nondecreasing in � (this follows from the inequality
−44�′/�5/4b′/b554�5 ≥ 1; see the proof of Theorem 5), this
implies that �1 < �2, a contradiction. Hence, in equilib-
rium p1 > p2 and �1 <�2. Similarly, if f2 ≥ f1 and g2 > g1,
the same argument would yield that p−1/�

1 b4�15�4�15�
g1
1 ≤

p−1/�
2 b4�25�4�25�

g1
2 < p−1/�

2 b4�25�4�25�
g2
2 and result again in

a contradiction.
Finally, note that increasing f1 or g1 results in a larger

�11 p2 and a smaller p11�2. Using (7), the equilibrium profits
can be rewritten as

�i =W

(

1 −
c

41 −�5pi

)

−
fi4�

−gi
i − 15
gi

0

Then, we have that

d�1

df1
=

¡�1

¡p1

dp1

df1
+

¡�1

¡�1

d�1

df1
−

¡k1

¡f1
≤ 01

d�1

dg1
=

¡�1

¡p1

dp1

dg1
+

¡�1

¡�1

d�1

dg1
−

¡k1

¡g1
≤ 01

d�1

df2
=

¡�1

¡p1

dp1

df2
+

¡�1

¡�1

d�1

df2
≥ 01

d�1

dg2
=

¡�1

¡p1

dp1

dg2
+

¡�1

¡�1

d�1

dg2
≥ 00

Therefore, �1 increases with f21g2 and decreases with f11g1.
A similar analysis shows that �2 increases with f11g1 and
decreases with f21g2, which completes the proof. �
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