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Abstract

We study a robust model of the multi-armed bandit (MAB) problem in which the transition
probabilities are ambiguous and belong to subsets of the probability simplex. We first show that
for each arm there exists a robust counterpart of the Gittins index that is the solution to a ro-
bust optimal stopping-time problem and can be computed effectively with an equivalent restart
problem. We then characterize the optimal policy of the robust MAB as a project-by-project
retirement policy but we show that arms become dependent so the policy based on the robust
Gittins index is not optimal. For a project selection problem, we show that the robust Gittins
index policy is near optimal but its implementation requires more computational effort than
solving a non-robust MAB problem. Hence, we propose a Lagrangian index policy that requires
the same computational effort as evaluating the indices of a non-robust MAB and is within 1%
of the optimum in the robust project selection problem.

Keywords: multiarmed bandit; index policies; Bellman equation; robust Markov decision pro-
cesses; uncertain transition matrix; project selection.

1. Introduction

The classical Multi-armed Bandit (MAB) problem can be readily formulated as a Markov decision

process (MDP). A traditional assumption for the MDP formulation is that the state transition

probabilities are either known in advance or estimated from data. The optimal policy is computed

ignoring any ambiguity in these transition probabilities. In practice, the transition probabilities are

based on the judgement of the decision maker or estimated from historical data which inevitably

has some associated noise rendering the probabilities ambiguous. When this ambiguity is taken

into account in the optimization phase, a robust approach is needed.

In this paper we model the robust MAB (RMAB) problem as a game between the decision

maker or controller and an adversary — which we call nature — such that the controller seeks to

maximize the expected reward by selecting a project to work on, and in response nature chooses the

worst possible expected reward by selecting the transition probability from a predefined ambiguity
∗Email address: fcaro@anderson.ucla.edu
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set. Our main contributions are: 1) we show that the RMAB problem is indexable in the sense

of Whittle [29] and the optimal policy is a project-by-project retirement policy; 2) we characterize

an index for the RMAB problem, the robust index (RI), as an optimal stopping time that can be

computed by solving a restart problem and show that it is suboptimal; 3) we propose the Lagrangian

index (LI) policy that is computationally easier to evaluate than RI; 4) we propose a partial robust

value iteration approach to approximately evaluate the worst-case expected reward of a policy; and

5) for the sequential project selection (SPS) problem we show that the suboptimality gaps of the

LI and RI policies are comparable and near optimal. Overall, our work contributes to the nascent

literature on approximate methods for robust MDPs which to date is a relatively unexplored area.

Many authors have addressed the issue of ambiguous transition probabilities of an MDP (see

Satia and Lave [25], White and Eldeib [27], Givan et al.[13], Ng et al. [2], Nilim and El Ghaoui

[20], Iyengar [15], Shapiro [26]). All these papers consider that the state transition probability

lies in a given subset of the probability simplex (i.e. the ambiguity set) and they consider all the

possible scenarios for the transition probability matrix within these pre-defined sets and seek a

policy for the decision maker that performs best in the worst-case scenario. An approach which

gives less conservative robust policies has been proposed by Paschalidis and Kang [22]. Delage

and Mannor [9] use chance constraints for the same effect. Wiesemann et al. [30] introduced

general class of ambiguity sets in which the transition probability chosen by nature for the same

state but different actions can be dependent. All these papers provide general frameworks that are

computationally intensive, if not untractable. There is a dearth of approximate methods, even for

particular applications, to the point that Iyengar [15] concludes his paper calling for more research

in this area. One of the few applications we are aware of is Dimitrov et al. [11] that study a

robust MDP formulation for school budget allocation. Their approximate method is based on a

Lagrangian decomposition that is similar to ours.

In contrast to the papers mentioned above, the focus of this paper is to study the RMAB

problem. Our robust dynamic programming formulation follows Iyengar [15] and Nilim and El

Ghaoui [20] so we assume that transitions are ambiguous but within certain sets. There is a

separate stream of literature on sequential sampling of bandits in which the expected rewards

depend on unknown parameters; see Lai and Robbins [19], Katehakis and Robbins [16], Burnetas

and Katehakis [5]. These papers have a different objective than ours as they focus on minimizing

regret by constructing adaptive index policies that possess optimal increase rate properties. This

approach has been extended to finite state and action MDPs with incomplete information (Burnetas

and Katehakis [6]) and to adversarial bandits that either make no assumption whatsoever on the
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process generating the payoffs of the bandits (Auer et al. [1]) or bound its variation within a

“variation budget” (Besbes et al. [4]). At the time of submission we became aware of the work by

Kim and Lim [18] that also study the RMAB problem but with an alternative formulation in which

deviations of the transition probabilities from their point estimates are penalized, so the analysis

is essentially different from ours.

2. Model Formulation

We model the RMAB problem as a finite-state, infinite horizon robust MDP in which the payoffs

are discounted by δ ∈ (0, 1) in each period and the reward obtained for pulling arm n in state sn is

given by Rn(sn). There is a set N = {1, .., N} of available arms each having state space Sn, n ∈ N .

The state space for the RMAB system is S = S1 × .. × SN . The controller selects an action from

the action space A =
{
a ∈ {0, 1}N :

∑
n∈N an = 1

}
where an = 1 and an = 0 represent pulling

and not pulling arm n, respectively. Note that as in the classical MAB problem, the controller is

restricted to pull one arm at a time.

For arm n, let pn :=
(
pn(j)

)
j∈Sn

denote a probability distribution on Sn. Let ∆(Sn) ={
q ∈ <|Sn|

+ :
∑

j∈Sn
q(j) = 1

}
be the probability simplex on Sn. Let Un(sn, an) ⊆ ∆(Sn)

be the uncertainty set for action an in state sn ∈ Sn. If an = 1, then arm n transitions as

a Markov process to a new state from the current state sn with a transition probability dis-

tribution pn ∈ Un(sn, 1). If an = 0, then the arm does not undergo any state transition so

Un(sn, 0) =
{
q ∈ ∆(Sn) : q(j) = 0,∀j 6= sn

}
. The transition probability distribution for the system

of N arms is given by p := (pn)n∈N ∈ U(s, a) = U1(s1, a1) × . . . × UN (sN , aN ). When the context

is unambiguous, we write Un(sn) instead of Un(sn, 1).

We assume that there is a single adversary that controls the transitions of all arms. Moreover,

we allow the adversary to play dynamically in the sense that the choice of particular distribution

p ∈ U(s, a) in a state-action pair (s, a) at a given point in time does not limit the choices of the

adversary in the future. This last assumption is known as the rectangularity assumption and it

provides the separability that is fundamental in order to establish the robust counterpart of the

Bellman equation (see Iyengar [15] and Nilim and El Ghaoui [20]). For the controller, we focus on

deterministic stationary policies that dictate which arm to pull in each state s ∈ S. This policy

restriction is without any loss of performance (see Theorem 3.1 in Iyengar [15]).

The objective of the controller is to find a (robust) policy that maximizes the worst-case expected

reward. Let V (s) be the optimal reward starting in state s. Under the assumptions stated above

we can formulate the RMAB problem as a sequential game with perfect information between the
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controller and nature. The robust dynamic programming recursion for this game is given by

V (s) = max
a∈A

{ ∑
n∈N

Rn(sn)an + δ inf
p∈U(s,a)

∑
s′∈S

∏
n∈N

pn(s′n)V (s′)
}

, ∀ s ∈ S. (1)

We conclude this section with a few remarks. First, in our model we assume a single adversary.

This assumption is standard in the robust MDP literature. One could think of an alternative game

in which there are N replicas of nature, one for each arm, so the controller plays against arm specific

adversaries. This alternative game turns out to be intractable since the uncertainty structure does

not satisfy the rectangularity assumption so formulating the Bellman equation requires a state

augmentation as in Shapiro [26]. A second remark is that we allow nature to play dynamically, but

when the controller follows a stationary policy, nature’s best-response is to also play a stationary

policy (see Lemma 3.3 in Iyengar [15] or Theorem 4 in Nilim and El Ghaoui [20]). In other words,

for a given state-action pair, nature chooses the same probability distribution at any point in

time. Finally, the literature provides many different ways of specifying the ambiguity sets U(s, a)

of the transition matrices. In this paper, we use the relative entropy Un(sn, 1) =
{
p ∈ ∆(Sn) :∑

j∈Sn
p(j) log p(j)

q(j) ≤ β
}

to model ambiguity where β is a fixed parameter and q is a point estimate

of the transition probability distribution in state sn.

3. Robust Index Policy

The classical MAB problem has an optimal solution given by the Gittins index policy which asso-

ciates a dynamic index to each arm and then plays the arm with the highest index in each period

(see Frostig and Weiss [12] for several proofs of this result). In this section we define and analyze

an index policy for the RMAB model in Equation (1). For that, consider the “one and a half” or

1-1/2 RMAB problem. This problem comprises an arm n with state space Sn and a standard arm

that does not change state so it always provides a constant reward λ. Since the standard arm has

no transition, its state can be omitted. From Equation (1), the Bellman equation for the 1-1/2

RMAB problem corresponds to:

V (sn) = max
{

Rn(sn) + δ inf
pn∈Un(sn)

∑
j∈Sn

pn(j)V (j),
λ

(1− δ)

}
, ∀ sn ∈ Sn. (2)

where V (sn) is the worst-case expected reward obtained when starting in state sn. The maximiza-

tion in the right hand side of Equation (2) has two terms representing the reward of pulling arm

n and the reward of pulling the standard arm. Since arm n remains in the same state when it

is rested — i.e., when it is not pulled — once it is optimal to rest arm n, it is optimal to rest it

forever. Hence, the reward for pulling the standard arm equals λ/(1− δ).
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Let Dn(λ) ⊆ Sn be the set of states for which it is optimal to rest arm n when the reward of the

standard arm is λ. Following Whittle [29], an arm is indexable if Dn(λ) increases monotonically

from ∅ to Sn as λ increases from −∞ to +∞. Indexibility implies that for each state sn ∈ Sn there

exists a value of λ that makes the controller indifferent between pulling or not the standard arm.

This value of λ is defined as the index of arm n in state sn. If all arms are indexable, then the

RMAB problem is indexable, in which case λ induces a consistent ordering of the arms in the sense

that any arm that is rested under a reward λ will also be rested under a higher reward λ′ > λ. As

intuitive as it might seem, indexibility should not be taken for granted in bandit problems (see, for

instance, Caro and Yoo [7]). Hence, our first result is to show that the RMAB problem is indexable.

Proposition 1. The RMAB problem is indexable.

Proof. In this proof we will denote the expected worst case reward V (sn) of equation (2) as V λ(sn),

where λ is the constant reward from the standard arm. Consider the 1-1/2 RMAB problem for a

fixed project n ∈ N . To simplify the notation, we omit the subscript n from Rn, Sn, pn, and Un

henceforth in the proof. For a given state i ∈ S, we consider the function

∆fi(λ) = R(i) + δ inf
p(i)∈U(i)

( ∑
j∈S

p(j)V λ(j)
)
− λ

(1− δ)
, (3)

We now show that ∆fi(λ) is a continuous and decreasing function of λ such that ∆fi(−∞) > 0 and

∆fi(+∞) < 0. If that holds true then it implies that the equation ∆fi(λ) = 0 has a root, which in

turn means that the arms in RMAB problem are indexable. In what follows we use the convergence

of the robust dynamic programming algorithm so V λ(i) = limk→∞ V λ
k (i),∀ i ∈ S, where V λ

k (i) is

the k-th value iteration of the Bellman recursion (see Theorem 3.2 in Iyengar [15] or Theorem 3 in

Nilim and El Ghaoui [20]).

Claim 1 : ∆fi(λ) is a continuous function of λ.

We first show that V λ
k (i) is a continuous function of λ. We apply an inductive argument on k.

At k=1, V λ
1 (i) = max{λ, R(i)}. Since the functions λ and R(i) are continuous in λ, the function

V λ
1 (i) is also continuous in λ. This follows from the property that maximum of two continuous

functions is continuous. Let this property be true for k = m i.e., V λ
m(i) is a continuous function of

λ. Then for k = m + 1, we get

V λ
m+1(i) = max

λ(1− δm+1)
(1− δ)

, R(i) + δ inf
p∈U(i)

( ∑
j∈S

p(j)V λ
m(j)

) .

Clearly, the term λ(1−δm+1)
(1−δ) is continuous in λ. Since the weighted sum of continuous functions is

continuous, for any p ∈ U(i) we have
∑
j∈S

p(j)V λ
m(j), that is continuous. Also, inf

p∈U(i)

( ∑
j∈S

p(j)V λ
m(j)

)
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is continuous since the infimum of continuous functions is also continuous over compact subsets of

the probability simplex. Hence, R(i)+δ inf
p∈U(i)

( ∑
j∈S

p(j)V λ
m(j)

)
is continuous and therefore V λ

m+1(i)

is a continuous function of λ. Therefore, by principle of induction this property holds true for all

k. Hence, ∆fi(λ), which is a sum of continuous functions of λ is also a continuous function of λ for

any state i ∈ S.

Claim 2 : The function ∆fi(λ) is a decreasing function of λ for all states i ∈ S.

Let λ1 < λ2. We show that

∆fi(λ2) < ∆fi(λ1),∀i ∈ S, (4)

by applying induction on iteration step k. For k=1 , ∆f1
i (λ1) = R(i)−λ1 and ∆f1

i (λ2) = R(i)−λ2.

Hence, ∆f1
i (λ2) < ∆f1

i (λ1),∀i ∈ S. Now, let us assume that (4) is true for all k ≤ m. Therefore,

∆fm
i (λ2) < ∆fm

i (λ1),∀i ∈ S. (5)

For k = m + 1 and a given i ∈ S we have

∆fm+1
i (λ2)−∆fm+1

i (λ1) =

R(i) + δ inf
p∈U(i)

( ∑
j∈S

p(j)V λ2
m (j)

)
− λ2(1− δm+1)

(1− δ)


−

R(i) + δ inf
p∈U(i)

( ∑
j∈S

p(j)V λ1
m (j)

)
− λ1(1− δm+1)

(1− δ)

 .

Let NPULL represent the action of not selecting project n and let PULL represent the action of

selecting project n. Then we can write for any k and any state j ∈ S:

V λ
k (j) = V λ,NPULL

k (j)+max
{

0, V λ,PULL
k (j)− V λ,NPULL

k (j)
}

= V λ,NPULL
k (j)+max

{
0,∆fk

j (λ)
}

.

Therefore, for k = m + 1:

∆fm+1
i (λ2)−∆fm+1

i (λ1) = δ inf
p∈U(i)

∑
j∈S

p(j)
[
V λ2,NPULL

m (j) + max{0,∆fm
j (λ2)} −

λ2(1− δm)
(1− δ)

]

−δ inf
p∈U(i)

∑
j∈S

p(j)
[
V λ1,NPULL

m (j) + max{0,∆fm
j (λ1)} −

λ1(1− δm)
(1− δ)

]
+ (λ1 − λ2)

= δ inf
p∈U(i)

∑
j∈S

p(j)
[
max{0,∆fm

j (λ2)}
]
− δ inf

p∈U(i)

∑
j∈S

p(j)
[
max{0,∆fm

j (λ1)}
]
+ (λ1 − λ2), (6)

where the equality follows from the fact that V λ,NPULL
m (j) = λ(1−δm)

(1−δ) , for λ = λ1, λ2. From (5) we

have max{0,∆fm
j (λ2)} ≤ max{0,∆fm

j (λ1)},∀j ∈ S. Therefore,
∑

j p(j)
[
max{0,∆fm

j (λ2)}
]
≤∑

j p(j)
[
max{0,∆fm

j (λ1)}
]

for any p ∈ U(i). Hence, infq∈U(i)

∑
j q(j)

[
max{0,∆fm

j (λ2)}
]
≤∑

j p(j)
[
max{0,∆fm

j (λ1)}
]

for any p ∈ U(i) and therefore infq∈U(i)

∑
j q(j)

[
max{0,∆fm

j (λ2)}
]
≤
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infp∈U(i)

∑
j p(j)

[
max{0,∆fm

j (λ1)}
]
. From (6) we therefore have ∆fm+1

i (λ2) − ∆fm+1
i (λ1) < 0.

Since i was arbitrary, the property holds for all i ∈ S and all k, so it also holds in the limit k →∞.

Since ∆fi(+∞) < 0 and ∆fi(−∞) > 0, ∆fi(λ) = 0 has a root (when the root is not unique, it

is customary to take the smallest one). Therefore, the index λ(i) is well-defined for any state i of

any robust arm, which concludes the proof.

An important property of the (non-robust) Gittins index is that it can be characterized using

stopping times. This property provides a probabilistic interpretation of the Gittins index and has

been used to develop other exact methods to compute the indices (e.g., see Robinson [24]). In our

case we show that the Gittins index amounts to a robust maximization over stopping times.

Consider the 1-1/2 RMAB formulated in Equation (2) for a given arm n ∈ N . Let Zn(t) denote

the state of arm n at time t. The stochastic process Zn(t) is governed by the collection p ∈ Un of —

possibly time-varying — transition matrices chosen by nature, where Un is the set of all admissible

dynamic policies that can be constructed from the ambiguity sets Un(i, 1), i ∈ Sn. Let τn be a Zn(t)

stopping time and let νn(i, τn) be the worst-case expected discounted reward per unit of discounted

time when the initial state is i and arm n is operated for a duration τn. Formally,

νn(i, τn) = inf
p∈Un

Ep

{∑τn−1
t=0 δtRn(Zn(t))

∣∣∣Zn(0) = i
}

Ep

{∑τn−1
t=0 δt

∣∣∣Zn(0) = i
} , (7)

where Ep[·] is the expectation when the dynamics of arm n are governed by the collection of

transition matrices p. We will refer to the Gittins index for RMAB as the robust Gittins index.

We can now state our result.

Proposition 2. The robust Gittins index is given by νn(i) = sup
τn>0

νn(i, τn), ∀ i ∈ Sn, n ∈ N .

Proof. The proof is for a given arm, so we omit the subindex n. Consider the 1-1/2 RMAB

problem in which the controller can retire by pulling the standard arm and receives a lump sum M .

The terminal payoff M plays an important role in the proof so we make it an explicit component

of the state variable. Hence, we rewrite the Bellman equation (2) as:

V (i,M) = max
{

R(i) + δ inf
p(i)∈U(i)

∑
j∈S

p(i, j)V (j, M),M
}

, ∀ i ∈ S. (8)

Let V π(i,M) denote the discounted reward under an arbitrary policy π starting from state i and

with terminal payoff M . From Theorem 2.1 in Iyengar [15], it follows that V (i,M) = supπ V π(i,M),

where the supremum is with respect to all admissible policies.
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Similar to Proposition 2.2 in Frostig and Weiss [12], for a given terminal payoff M we define:

Strict stopping set SM =
{
i : M > R(i) + δ inf

p∈U(i)

∑
j∈S

p(j)V (j,M)
}

Strict continuation set CM =
{
i : M < R(i) + δ inf

p∈U(i)

∑
j∈S

p(j)V (j, M)
}

Indifferent states IM =
{
i : M = R(i) + δ inf

p∈U(i)

∑
j∈S

p(j)V (j, M)
}
.

These sets are disjoint and any state i ∈ S must belong to SM , CM or IM . Since the arm is

indexable, c.f. Proposition 1, we know that any policy which continues to activate the non-standard

arm while in CM , acts arbitrarily in IM and retires in SM is optimal.

For any state i ∈ S, let M(i) = inf
{
M : V (i,M) = M

}
and λ(i) = (1− δ)M(i). We now show

that ν(i) equals the robust Gittins index λ(i).

Claim 1 : ν(i) ≤ λ(i).

Let y < ν(i) and M = y
(1−δ) . Since ν(i) is the supremum over all stopping times, there exists a

stopping time τ for which ν(i, τ) > y. Moreover, for any p̃ ∈ U ,

y < inf
p∈U

Ep

{∑τ−1
t=0 δtR(Z(t))

∣∣∣Z(0) = i
}

Ep

{∑τ−1
t=0 δt

∣∣∣Z(0) = i
} ≤

Ep̃

{∑τ−1
t=0 δtR(Z(t))

∣∣∣Z(0) = i
}

Ep̃

{∑τ−1
t=0 δt

∣∣∣Z(0) = i
} . (9)

Let π be the policy that plays the non-standard arm up to time τ and then stops to collect the

reward M . Hence,

V π(i,M) = inf
p∈U

Ep

{
τ−1∑
t=0

δtR(Z(t)) +
∞∑

t=τ

δty
∣∣∣Z(0) = i

}
.

For any ε > 0, there exists p? such that

V π(i,M) > Ep?

{
τ−1∑
t=0

δtR(Z(t)) +
∞∑

t=τ

δty
∣∣∣Z(0) = i

}
− ε

= Ep?

{
τ−1∑
t=0

δtR(Z(t))
∣∣∣Z(0) = i

}
+ Ep?

{ ∞∑
t=τ

δty
∣∣∣Z(0) = i

}
− ε

> Ep?

{
τ−1∑
t=0

δty
∣∣∣Z(0) = i

}
+ Ep?

{ ∞∑
t=τ

δty
∣∣∣Z(0) = i

}
− ε

= Ep?

{
y

(1− δ)
−

∞∑
t=τ

δty
∣∣∣Z(0) = i

}
+ Ep?

{ ∞∑
t=τ

δty
∣∣∣Z(0) = i

}
=

y

(1− δ)
− ε = M − ε,

where the second inequality follows from (9). Since ε can be arbitrarily small, V π(i,M) ≥ M ,

which implies V (i, M) ≥ M and i ∈ CM ∪ IM . Therefore, M(i) ≥ M and λ(i) ≥ y. Since y < ν(i)

was arbitrary, λ(i) ≥ ν(i).

Claim 2 : ν(i) ≥ λ(i).
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Consider any y < λ(i) and let M = y
(1−δ) . We define the stopping time τ(i,M) as the first

passage time from i into SM . The stopping time τ(i,M) is optimal so its discounted reward is

equal to V (i, M). We have that M < M(i) so i ∈ CM and V (i,M) > M . Now suppose that

ν(i, τ(i,M)) ≤ y. Consider any ε > 0, then there exists p∗ such that:

Ep∗

{∑τ(i,M)−1
t=0 δtR(Z(t))|Z(0) = i

}
Ep?

{∑τ(i,M)−1
t=0 δt|Z(0) = i

} ≤ y + ε(1− δ), (10)

which in turn implies that

V (i,M) = inf
p∈U

Ep

{
τ(i,M)−1∑

t=0

δtR(Z(t)) +
∞∑

t=τ(i,M)

δty
∣∣∣Z(0) = i

}

≤ Ep∗

{
τ(i,M)−1∑

t=0

δtR(Z(t)) +
∞∑

t=τ(i,M)

δty
∣∣∣Z(0) = i

}

≤ Ep∗

{
τ(i,M)−1∑

t=0

δty +
∞∑

t=τ(i,M)

δty
∣∣∣Z(0) = i

}
+ ε =

y

1− δ
+ ε = M + ε.

The first equality above follows from the optimality of τ(i,M) and the last inequality follows from

(10). Since ε is arbitrarily small, V (i, M) ≤ M . But this contradicts V (i,M) > M . Hence,

V (i,M) > M must imply ν(i, τ(i,M)) > y, which means that ν(i) > y. Since y < λ(i) was

arbitrary, ν(i) ≥ λ(i), and the proof is complete.

It can be shown that the stopping time τn(i,M) defined in the proof of Proposition 2 achieves

the supremum in Equation (7). Moreover, the policy induced by τn(i, M) is stationary, so nature’s

best-response is stationary, which means that the minimization in Equation (7) can be restricted

to stationary transition matrices without any loss of optimality.

From the proof of Proposition 2 it follows that the robust Gittins index λ(i), i ∈ S, is equal

to (1 − δ)M(i), where M(i) = inf
{
M : V (i,M) = M

}
and V (i,M) is defined in Equation (8).

Hence, we can invoke the restart problem introduced in Katehakis and Veinott, Jr. [17] and Cowan

and Katehakis [8] to compute the robust indices.1 Indeed, one can show that for a fixed initial

state i0 ∈ S, λ(i0) = (1− δ)J(i0), where J(i) is the solution to the following infinite horizon robust

Bellman equation:

J(i) = max
{

R(i0) + δ inf
p∈U(i0)

∑
j∈S

p(j)J(j), R(i) + δ inf
p∈U(i)

∑
j∈S

p(j)J(j)
}

. (11)

From Theorem 5 in Nilim and El Ghaoui [20] we have that solving the restart problem (11) takes

O(S2(log(1
ε ))

2) computations for an arm with S states, where ε is the desired precision. Hence,
1We thank the Associate Editor for bringing the restart problem to our attention.
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evaluating all the indices has a complexity O(S3 log2(
Rmax

ε )(log(1
ε ))

2). In Section 6 we report the

time required to compute the indices for a project selection problem.

The ambiguity level of the transition probabilities affects the index of a state. Similar to the

worst-case expected reward (Paschalidis and Kang [22]), the index of a state varies inversely with

the level of ambiguity corresponding to the transition probabilities. We formalize this observation

in Proposition 3 here below. Note that an immediate corollary is that the robust Gittins index is

more conservative than its non-robust counterpart.

Proposition 3. For any arm n ∈ N and for each i ∈ Sn, let Un(i) ⊆ Un(i) be a pair of nested

ambiguity sets. Then, the corresponding indices satisfy λU (i) ≤ λU (i),∀ i ∈ Sn.

Proof. The proof again is for a fixed arm so we can drop the subindex n. Consider the 1-1/2 RMAB

given by Equation (2). For a state i ∈ S, Paschalidis and Kang [22] show that VU (i) ≤ VU (i). Hence,

∆fi(λ) ≤ ∆f i(λ),∀λ, where ∆fi(λ) and ∆f i(λ) are defined in Proposition 1 for the ambiguity sets

U(i) and U(i), respectively. As shown earlier both ∆fi(λ) and ∆f i(λ) are continuous and decreasing

functions of λ such that lim
λ→+∞

∆f i(λ) < 0 and lim
λ→−∞

∆f i(λ) > 0. Same holds true for ∆fi(λ).

Let ∆fi(λU (i)) = 0 and ∆f i(λU (i)) = 0. Therefore, ∆f i(λU (i)) ≥ ∆fi(λU (i)) = ∆f i(λU (i)), which

implies that λU (i) ≤ λU (i) and the proof is complete.

Since we show that a real valued index can be assigned to each state of a project, the natural

question that arises is how can we characterize the optimal policy for the RMAB problem in terms

of the indices. Similar to the classical MAB problem, we show that a project-by-project retirement

(PPR) policy is optimal for the RMAB problem. For that, we introduce a retirement option in the

same fashion as the proof of Proposition 2 but now for the combined bandit problem with N arms.

Hence, we rewrite the Bellman equation (1) as

V (s,M) = max

{
M, max

a∈A

{ ∑
n∈N

Rn(sn)an + δ inf
p∈U(s,a)

∑
s′∈S

∏
n∈N

pn(s′n)V (s′,M)
}}

, ∀ s ∈ S, (12)

where M is the terminal payoff the controller receives if it retires. For each sn ∈ Sn and n ∈ N ,

let λn(sn) be the robust index and let S n
M =

{
sn : λn(sn) < M(1− δ)

}
be arm n’s retirement set.

According to the PPR policy, at any state s ∈ S the controller should permanently retire arm n

if sn ∈ S n
M or should work on some arm if sn′ /∈ S n′

M for some n′ ∈ N . The PPR policy does not

specify which arm to select from those that have not been retired but it identifies the arms that

should no longer be pulled. We next show that such policy is indeed optimal.

Proposition 4. There exists an optimal PPR policy for the RMAB problem.
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Proof. The construction of the proof is similar to that of Proposition 1.5.2 in Bertsekas [3] for

non-robust MAB. Let f(s, s′i) = (s1, . . . , si−1, s
′
i, si+1, . . . , sn). The existence of a PPR policy is

equivalent to having, for all n ∈ N ,

M > Rn(sn) + δ inf
pn∈Un(sn)

∑
s′n∈Sn

pn(s′n)V
(
f(s, s′n),M

)
∀ s with sn ∈ Sn

M (13)

M ≤ Rn(sn) + δ inf
pn∈Un(sn)

∑
s′n∈Sn

pn(s′n)V
(
f(s, s′n),M

)
∀ s with sn /∈ Sn

M . (14)

Let the expected worst-case reward obtained by working on project n only be given by

V n(sn,M) = max
{

M,Rn(sn) + δ inf
pn∈Un(sn)

∑
s′n∈Sn

pn(s′n)V n(s′n,M)
}

. (15)

Since, the expected reward obtained from working on project n only is less than the expected reward

obtained from working on any project including project n we have V n(sn,M) ≤ V (s,M),∀s ∈ S.

This implies for any fixed s ∈ S and p′n ∈ Un(sn) we have the following
∑

s′n∈Sn

p′n(s′n)V n(s′n,M) ≤∑
s′n∈Sn

p′n(s′n)V (f(s, s′n),M). Hence,

inf
pn∈Un(sn)

∑
s′n∈Sn

pn(s′n)V n(s′n,M) ≤
∑

s′n∈Sn

p′n(s′n)V (f(s, s′n),M).

Since this is true for any p′n ∈ Un(sn), therefore we have

inf
pn∈Un(sn)

∑
s′n∈Sn

pn(s′n)V n(s′n,M) ≤ inf
pn∈Un(sn)

∑
s′n∈Sn

pn(s′n)V (f(s, s′n),M).

Hence, if sn /∈ Sn
M then

M ≤ Rn(sn) + δ inf
pn∈Un(sn)

∑
s′n∈Sn

pn(s′n)V n(s′n,M)

≤ Rn(sn) + δ inf
pn∈Un(sn)

∑
s′n∈Sn

pn(s′n)V (f(s, s′n),M).

Thereby, we obtain (14). Without loss of generality we show (13) for project n = 1. Let

s−1 = (s2, .., sN ), i.e. the state of all the projects except project 1 and we define f(s−1, s
′
n) =

(s2, . . . , sn−1, s
′
n, sn+1, . . . , sN ). We then define the expected reward obtained from all the projects

except project 1 as

V (s−1,M) = max

M,max
n6=1

[
Rn(sn) + δ inf

pn∈Un(sn)

∑
s′n∈Sn

pn(s′n)V (f(s−1, s
′
n),M)

] . (16)

11



Clearly V (s−1,M) ≤ V (s,M), ∀s ∈ S. Next we show that V (s,M) ≤ V (s−1,M) when s1 ∈ S1
M .

In particular, we show the following

V (s,M) ≤ V (s−1,M) +
(
V 1(s1,M)−M

)
. (17)

Note that for s1 ∈ S1
M , V 1(s1,M) = M and therefore V (s,M) = V (s−1,M) thereby establish-

ing that when s1 ∈ S1
M it is optimal to retire project 1 and select from the other projects (i.e.,

(13)). To show (17) we proceed by induction on the value iteration recursions. We use the con-

vergence of the robust dynamic programming algorithm so V (s,M) = lim
k→∞

Vk(s,M), V 1(s1,M) =

lim
k→∞

V 1
k (s1,M), V (s−1,M) = lim

k→∞
Vk(s−1,M),∀ s ∈ S, where Vk(s,M), Vk(s−1,M) and V 1

k (s1,M)

are the k-th value iteration of the Bellman recursion (see Theorem 3.2 in Iyengar [15] or Theorem

3 in Nilim and El Ghaoui [20]).

For k = 0 we initialize V0(s,M) = M, V0(s−1,M) = M and V 1
0 (s1,M) = M, ∀ s ∈ S.

Therefore (13) is satisfied for k = 0. Let us assume for k = m :

Vm(s,M) ≤ Vm(s−1,M) +
(
V 1

m(s1,M)−M
)
. (18)

We now show that (17) holds for k = m + 1. We can re-write (12) as

Vm+1(s,M) = max {M, q1, q2} (19)

where

q1 = R1(s1) + δ inf
p1∈U1(s1)

∑
s′1∈S1

p1(s′1)Vm

(
f(s, s′1),M

)
q2 = max

n6=1

(
Rn(sn) + δ inf

pn∈Un(sn)

∑
s′n∈Sn

pn(s′n)Vm

(
f(s, s′n),M

))
.

From (18) we have for any n,

inf
pn∈Un(sn)

∑
s′n∈Sn

pn(s′n)Vm

(
f(s, s′n),M

)
≤ inf

pn∈Un(sn)

∑
s′n∈Sn

pn(s′n)
(
V 1

m(s′1,M) + Vm

(
f(s−1, s

′
n),M

)
−M

)
.

Therefore adding Rn(sn) on either side of above inequality we obtain for any n,

Rn(sn) + inf
pn∈Un(sn)

∑
s′n∈Sn

pn(s′n)Vm

(
f(s, s′n),M

)
(20)

≤ Rn(sn) + inf
pn∈Un(sn)

∑
s′n∈Sn

pn(s′n)
(
V 1

m(s′1,M) + Vm

(
f(s−1, s

′
n),M

)
−M

)
.
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Hence for n = 1,

q1 ≤ max
[
M,R1(s1) + δ inf

p1∈U1(s1)

∑
s′1∈S1

p1(s′1)
(
V 1

m(s′1,M) + Vm

(
f(s−1, s

′
1),M

)
−M

)]
, (21)

and for n 6= 1,

q2 ≤ max
[
M,max

n6=1

{
Rn(sn) + δ inf

pn∈Un(sn)

∑
s′n∈Sn

pn(s′n)
(
Vm

(
f(s−1, s

′
n),M

)
+ V 1

m(s′1,M)−M
)}]

.

(22)

Since Vm(s−1,M)−M and V 1
m(s1,M)−M are constants with respect to the inner optimization

problem in (21) and (22) respectively and both Vm(s−1,M), V 1
m(s1,M) ≥ M,∀ s ∈ S, we can define

q̃1 = max
[
M,R1(s1) + δ inf

p1∈U1(s1)

∑
s′1∈S1

p1(s′1)V
1
m(s′1,M)

]
+

(
Vm(s−1,M)−M

)

q̃2 = max
[
M,max

n6=1

{
Rn(sn) + δ inf

pn∈Un(sn)

∑
s′n∈Sn

pn(s′n)Vm

(
f(s−1, s

′
n),M

)}]
+

(
V 1

m(s1,M)−M
)
.

Hence qi ≤ q̃i and M ≤ q̃i, i = 1, 2. Therefore,

Vm+1(s,M) ≤ max {q̃1, q̃2}

or, Vm+1(s,M) ≤ max
[
V 1

m+1(s1,M) +
(
Vm(s−1,M) − M

)
, Vm+1(s−1,M) +

(
V 1

m(s1,M) − M
)]

.

We know from the Bellman recursion in Equations (15)-(16) and the initial values V0(s,M) =

M, V0(s−1,M) = M and V 1
0 (s1,M) = M,∀s ∈ S, that V 1

m(s1,M) ≤ V 1
m+1(s1,M), Vm(s−1,M) ≤

Vm+1(s−1,M),∀s ∈ S. Therefore, we have V 1
m+1(s1,M) +

(
Vm(s−1,M) − M

)
≤ V 1

m+1(s1,M) +(
Vm+1(s−1,M)−M

)
and Vm+1(s−1,M)+

(
V 1

m(s1,M)−M
)
≤ Vm+1(s−1,M)+

(
V 1

m+1(s1,M)−M
)
.

Hence, by principle of induction (17) holds for any k.

Proposition 4 shows that the robust Gittens indices are informative in the sense that they

indicate which arms are the most promising (i.e., the arms that should not be retired). Then one

could expect that a policy based on these indices should perform well. Let the robust index (RI)

policy be the policy that chooses to play in each period the arm that has the highest robust Gittins

index in its current state among all the other arms. In Section 6 we show that the RI policy is

indeed near optimal. However, in contrast to the non-robust MAB, the RI policy in general is

not optimal. The suboptimality arises from the fact that nature may choose a different transition

probability distribution for the same state of an arm depending on the current state of the other

arms. We demonstrate this by a counterexample. Let there be two projects each with three states

as indicated in Figure 1.
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Figure 1: State transition diagram for arm 1

For simplicity we assume discrete ambiguity sets with two possible probability distributions.

Let U1(1) =
{
(0.1, 0.9, 0), (0.7, 0.3, 0)

}
and U2(1) =

{
(0.8, 0.2, 0), (0.9, 0.1, 0)

}
. The rewards are

given as R1(1) = 1, R1(2) = 6, R1(3) = 0 and R2(1) = 2 and R2(2) = 3, R2(3) = 0. Let the

discount factor be δ = 0.9. The action space a ∈
{
(1, 0), (0, 1)

}
, where a = (1, 0) and a = (0, 1)

correspond to selecting arms 1 and 2, respectively.

The RI and optimal policies differ for states (1,1) and (1,2). The robust value functions for

states (1,1) and (1,2) are given by,

V (1, 1) = max
[
R1(1) + δ inf

p1

{
p1(1)V (1, 1) + (1− p1(1))V (2, 1)

}
,

R2(1) + δ inf
p2

{
p2(1)V (1, 1) + (1− p2(1))V (1, 2)

}]
V (1, 2) = max

[
R1(1) + δ inf

p1

{
p1(1)V (1, 2) + (1− p1(1))V (2, 2)

}
, R2(2) + δV (1, 3)

]
.

The optimal probability distributions correspond to p?
1 = (0.7, 0.3, 0), p?

2 = (0.8, 0.2, 0) for state

(1, 1) and p?
1 = (0.1, 0.9, 0) for state (1, 2). Hence, nature’s choice of the transition probability

distribution for state 1 of arm 1 depends on the state of arm 2 leading to suboptimality of the

index policy. Interestingly, the RI policy is suboptimal even in the alternative robust model in

which the controller plays against N replicas of nature (see the discussion at the end of Section 2).

The reason is that the adversaries have perfect information so their actions will internalize the state

of the other arms, which again introduces dependencies across arms. If the RI policy is evaluated

under maximum expected reward criterion instead of max-min criterion, then it reduces to the

non-robust Gittins index policy for point estimates of the transition probability. The RI policy can

still be used as a heuristic policy for the RMAB problem, but it is computationally intensive. In

the next section we introduce the Lagrangian index policy which performs as well as the RI policy

but can be computed more efficiently.
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4. Lagrangian Index Policy

Evaluating robust indices is more expensive than evaluating non-robust indices. Hence, we intro-

duce the Lagrangian index (LI) policy which chooses to play in each period the arm with the highest

Lagrangian index that will be defined later in this section. The Lagrangian indices are evaluated

by computing the Gittins indices of a classical MAB problem. The MAB problem is constructed by

first relaxing the constraint that only one arm can be pulled at a time by the controller to obtain

Lλ(s) = λ + max
a∈A

{ N∑
n=1

(Rn(sn)− λ)an + δ inf
p∈U(s,a)

∑
s′∈S

N∏
n=1

pn(s′n)V (s′)
}

(23)

This relaxation collapses to a system with N loosely coupled arms. This is equivalent to each arm

being played by the controller and an independent copy of nature. We note that this approach

resembles the approximate method in [11]. More broadly, this Lagrangian technique has shown to

be effective in solving weakly coupled MDPs (see for instance [14] and the references therein).

We can eventually show that solving the optimization problem given by equation (23) is equiv-

alent to solving a system of N 1-1/2 RMAB problems for a given λ. Moreover, we obtain the

following upper bound for the optimal reward starting in s ∈ S:

V (s) ≤ L?(s) = min
λ≥0

Lλ(s) = min
λ≥0

λ

1− δ
+

N∑
n=1

Lλ
n(sn), (24)

where

Lλ
n(sn) = max

an∈{0,1}

{
(Rn(sn)− λ)an + δ inf

pn∈Un(sn,an)

∑
s′n∈Sn

pn(s′n)Lλ
n(s′n)

}
.

The formal proof of Equation (24) is available from the authors and a similar proof can be found

in Caro and Yoo [7].

Since nature’s best-response is a stationary policy, for a given λ the above system assigns

a transition distribution to each arm by solving the N 1-1/2 RMAB problems. We fix λ? =

arg min
λ≥0

Lλ(s) and evaluate the policy of nature for each independent arm which gives a fixed state

transition probability distribution pλ? ∈ U(s, a) for the system of N arms. The Gittins index policy

for the corresponding non-robust MAB with state transition probability distribution pλ?
is the LI

policy. If the maximum expected reward criterion is applied in place of max-min reward criterion,

then the LI policy reduces to the Gittins index policy for point estimate of the transition probability.

Since, evaluating the Lagrangian indices takes as much computational effort as required to evaluate

the indices of a classical MAB, it is computationally faster to evaluate than the robust indices.
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5. Partial Robust Value Iteration

Evaluating any policy for the RMAB problem poses the following challenges 1) the exponentially

large state space prevents the exact computation of the robust value iteration and 2) ambiguous

transition probability for any state action pair does not allow simulation of policies to estimate the

expected reward. Hence, we introduce partial robust value iteration (PRV), that combines both

the above ideas to obtain an approximate value of the expected reward for a given policy. In PRV

we first simulate the policy for the point estimates of the transition probabilities (recall that for

the ambiguity sets we assume the entropy model introduced in Section 2). The states that are

visited during the simulation are identified as the high priority states. The remaining states are

identified as the low priority states. The low priority states have their expected reward truncated

to the immediate reward. The robust value iteration is applied only to the high priority states. Let

SH ⊂ S be the set of high priority states and SL ⊂ S be the set of low priority states such that

SH ∪ SL = S. If any state s′ ∈ SL then V (s′) =
∑
n∈N

Rn(s′n)an. If s′ ∈ SH then the robust Bellman

equation is the same as (1) for a given a ∈ A.

Figure 2: State transition diagram of a project

We illustrate the idea with an example of an RMAB problem where each arm has the state

transition diagram given by Figure 2 with START (S) and QUIT (Q) as the starting and quitting

states respectively for each project. The high priority states are identified as those states which

appear in the sample path from the starting state sS = (S, .., S) to the quitting state sQ = (Q, .., Q).

Depending on the probability distribution and the policy, different sample paths can be constructed

between sS and sQ states. For instance from any state sn of the n-th project the possible state

transitions on selecting the project are to states sn, sn + 1 or Q. If s ∈ SH , the expected reward
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for action an = 1 is computed according to the Bellman recursion

Rn(sn) + δ inf
pn∈Un(sn)

{
pn(sn)V (s) + pn(sn + 1)V (s1, ., sn + 1, ., sN ) + pn(Q)V (s1, ., Q, ., sN )

}
,

whereas if s ∈ SL, then the expected reward is approximated by the myopic reward Rn(sn). Hence,

only the value of the high priority states are updated during value iteration.

Let V π(s) for s ∈ S be the worst-case expected reward under a policy π and let vπ(s) be the

value obtained through PRV for the fixed policy π. We now show that PRV provides a lower bound

for the worst-case expected reward of a given policy.

Proposition 5. For a given policy π, vπ(s) ≤ V π(s),∀ s ∈ S

Proof. The result is clearly true for s ∈ SL. For s ∈ SH we use an inductive argument on the

value iteration recursions. We use the convergence of the robust dynamic programming algorithm

so V π(s) = limk→∞ V π
k (s) and vπ(s) = limk→∞ vπ

k (s),∀ s ∈ S, where V π
k (s) and vπ

k (s) are the k-th

value iteration of the Bellman recursion for the fixed policy π (see Theorem 3.2 in Iyengar [15] or

Theorem 3 in Nilim and El Ghaoui [20]). We initialize vπ
0 (s) = V π

0 (s) =
∑
n∈N

Rn(sn)an,∀s ∈ S.

Hence, the result holds true for k = 0. Let us assume vπ
k (s) ≤ V π

k (s),∀s ∈ S. We show that the

result holds true for k + 1. For any fixed q ∈ U(s, a) we have

∑
s′∈S

∏
n∈N

qn(s′n)vπ
k (s′) ≤

∑
s′∈S

∏
n∈N

qn(s′n)V π
k (s′),∀s′ ∈ S.

Therefore for any action a,

inf
p∈U(s,a)

∑
s′∈S

∏
n∈N

pn(s′n)vπ
k (s′) ≤

∑
s′∈S

∏
n∈N

qn(s′n)V π
k (s′),∀s′ ∈ S,

This is true for any q ∈ U(s, a). Hence, it is also true for the optimal distribution, i.e.,

inf
p∈U(s,a)

∑
s′∈S

∏
n∈N

pn(s′n)vπ
k (s′) ≤ inf

p∈U(s,a)

∑
s′∈S

∏
n∈N

pn(s′n)V π
k (s′),∀s′ ∈ S.

Adding a constant, we have

∑
n

Rn(sn)an+ inf
p∈U(s,a)

∑
s′∈S

∏
n∈N

pn(s′n)vπ
k (s′) ≤

∑
n

Rn(sn)an+ inf
p∈U(s,a)

∑
s′∈S

∏
n∈N

pn(s′n)V π
k (s′),∀s′ ∈ S.

Therefore, for a fixed policy π we have vπ
k+1(s) ≤ V π

k+1(s),∀s ∈ S. By principle of induction it is

true for any k.

17



6. Numerical Experiments

We compare the performance of Robust Index policy (RI) and Lagrangian Index policy (LI) with

the Non-robust Index policy (NRI) to evaluate the value of the robust approach. NRI is the index

policy evaluated for the point estimates of the transition probability. Moreover, we consider two

greedy approaches, the MYO and the CON policies. MYO is a myopic index policy where the index

for a state action pair is the immediate reward obtained in the current state of the arm specified

by the action. The comparison of LI and RI policies against the MYO policy shows the value of

being forward-looking. The CON policy is further explained in the following subsection where we

first describe the sequential project selection (SPS) problem followed by the performance of the

heuristic policies for the SPS problem.

6.1 Sequential Project Selection Problem

Activities like research, development or exploration, progress sequentially in nature, i.e. at any

given point of time the project can either move to the next stage towards completion or terminate

altogether. The SPS model is loosely based on the ideas given in Roberts and Weitzman [23]. The

controller has to choose a project from multiple projects at every decision epoch. Each project also

has the possibility of making no progress and staying in the same state as it was in the previous

period. If a project is abandoned in any intermediary stage then a small reward can be earned

or a cost can be incurred. This reward is much smaller than the reward obtained on successful

completion of the project. The intermediary rewards or cost indicate some partial benefit obtained

or expense incurred by working on a project up to the intermediate stage.

Figure 2 represents a state transition diagram for a general SPS. We see from Figure 2 that

the transition from states START, END and QUIT are known for sure. The ambiguity is only

present in the transition probabilities between the intermediary states (1, .., N) shown in the figure.

Our objective is to evaluate the expected worst case profit for the state where all the projects are

in the initial START state. In most practical scenarios the probability of transitioning from an

intermediary state to any state in the following time period is not known accurately in advance so

we formulate the SPS problem as an RMAB problem.

6.2 Experimental Setting

The objective of the numerical experiments is to compare the performance of the four heuristic

policies, the RI, LI, NRI and MYO policies for the SPS problem. All the codes were written in
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MATLAB 7.9.0 (R2009b). We will represent a problem instance by (N,S) which would imply N

projects each having S states. For all our computational experiments the rewards for START and

QUIT were zero and for END we randomly assigned R ∈ [50, 100]. The intermediary states were

randomly assigned rewards r ∈ [1, 10]. The inner minimization problem for the robust Bellman

equation (1) corresponding to an action is a convex optimization problem which can be solved by

formulating its dual and applying the bisection algorithm on the dual problem (see Section 6, Nilim

and El Ghaoui [20]). The accuracy of the bisection algorithm for solving the inner optimization

problem was fixed as (1−δ)ε
2δ with ε = .001 for our computations.

For the upper bound we use the fact that if we fix nature’s policy, the optimal expected reward

for the corresponding non-robust MAB system is an upper bound for the original robust MAB

problem. Therefore the upper bound (UB) was evaluated by fixing nature’s policy as pλ?
(from

§4) and evaluating the optimal reward for the corresponding non-robust MAB system. We used

Monte Carlo simulation with relative estimation error equal to 0.02% and confidence level of 95%

to estimate the expected reward for the optimal policy. The individual RI, LI, NRI, and MYO

policies were evaluated by PRV. Any state appearing in any sample path was included in SH (high

priority states as described in §5). Figure 3 shows the relationship between the expected reward

obtained from a policy π by PRV and the robust value iteration, the optimal reward for RMAB, and

the upper bound. We vary three parameters of the model to compare the performance of different

policies, the discount factor δ, the ambiguity level β, and the uncertainty level for the point estimate

of transition probability γ, where p(sn, sn) = γ
2 , p(sn, sn+1) = 1 − γ, p(sn, QUIT ) = γ

2 ,∀n, γ > 0.

We also compare the RI, LI and NRI policies with a conservative strategy CON, that selects the

arm with the highest terminal reward (R) and plays it until it reaches END or QUIT and then

plays the arm with second highest reward and so on. The CON policy is conservative in the sense

that it finishes projects one by one.
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Figure 3: Suboptimality Gap

19



6.3 Computational Results

We begin this section by reporting the computational time required to compute all the robust

indices of a single arm using the restart problem (11). The results are shown in Table 1. For

comparison we include the computational time of an alternative method that computes the index

of state i ∈ S by finding the root of ∆fi(λ) = 0 using a bisection search.2. The bisection search

takes O(log2(
Rmax

ε )) iterations to converge, where Rmax is the maximum reward among all the

states of the arm. In contrast, the restart method solves a single robust MDP, and therefore it is

about an order of magnitude faster. As expected, the run times increase with the number of states

S and the discount δ but for the restart method they remain within an hour even for an instance

with a hundred states. Note that β = 0 corresponds to a non-robust MAB and represents the

computational time of the NRI and LI heuristics.

Table 1: Robust indices computational times in seconds (γ = 0.33)
S δ β = 0 β = 0.5 β = 1

restart bisection restart bisection restart bisection
6 0.90 0.2 2.2 1.3 9.4 1.2 9.0
6 0.95 0.4 5.1 3.0 22.7 2.7 21.5
6 0.98 1.0 15.8 8.6 72.8 7.6 68.0

50 0.90 12.8 160.2 112.4 945.1 105.5 901.5
50 0.95 27.8 383.0 254.0 2264.6 240.3 2191.5
50 0.98 76.8 1132.3 713.9 6962.5 698.6 6527.8

100 0.90 52.2 636.0 460.8 3868.6 420.4 3502.8
100 0.95 114.3 1506.1 1019.4 8920.1 931.5 8554.8
100 0.98 311.4 4576.6 2904.1 28307.0 2881.3 27859.0

In order to study the effect of the discount factor δ we fix the ambiguity level β = 0.5 and

the uncertainty level γ = 0.33 for all the intermediate states of all the arms. Then we vary

δ = 0.98, 0.95, 0.90 and report the performance gaps against the upper bound in Table 1. The

heuristic with the smallest suboptimality gap for each instance is shown in boldface.. We observe

that LI and RI policies outperform the NRI, CON, and MYO policies and have negligible difference

between their performance gaps.

In Table 3 we report the performance gaps of the heuristic policies for various levels of ambiguity

(β) with a fixed discount factor δ = 0.95 and uncertainty level γ = 0.33. Note that the upper bound

values decreases with increase in ambiguity. For higher β nature has more freedom to choose the

worst case reward. For lower β the suboptimality gap of NRI policy is less since low β implies less

ambiguity. From Table 3 we conclude that the LI and RI policies outperform the other heuristic
2From the proof of Proposition 1 it follows that ∆fi(λ) defined in Equation (3) is monotone decreasing in λ
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policies and are near optimal for varying levels of ambiguity β.

Table 2: % Gap (β = 0.5, γ = 0.33)
(N,S) δ LI (%) RI (%) NRI (%) MYO (%) CON (%) UB
(10,6) 0.90 0.3187 0.3138 2.1629 82.8426 18.7111 36.2257

0.95 0.1571 0.1631 1.3013 87.7161 11.0747 55.4729
0.98 0.0376 0.0406 0.9029 90.4053 4.7795 74.9872

(20,6) 0.90 0.4906 0.4897 5.0769 78.9409 20.6150 42.1161
0.95 0.3508 0.3475 3.5177 87.0391 15.7795 74.1790
0.98 0.1029 0.1030 1.4344 91.6034 7.5408 120.1303

(30,6) 0.90 0.4819 0.4712 3.3284 94.4459 40.5325 40.7007
0.95 0.5093 0.4976 3.2371 96.5627 32.3179 74.9461
0.98 0.1692 0.1747 1.5960 97.8994 16.6486 132.6080

(40,6) 0.90 0.7551 0.7403 4.0805 79.3059 48.2339 41.2047
0.95 0.7322 0.7202 3.3361 88.5751 38.0846 80.4769
0.98 0.3525 0.3517 2.4118 94.0113 22.1388 160.5414

Table 3: % Gap (δ = 0.95, γ = 0.33)
(N,S) β LI (%) RI (%) NRI (%) MYO (%) CON (%) UB
(10,6) 0.1 0.2118 0.2112 0.2883 85.7835 6.0880 84.7780

0.5 0.1571 0.1631 1.3013 87.7161 11.0747 55.4729
1.0 0.0453 0.0491 2.5863 88.8776 14.5199 44.0211

(20,6) 0.1 0.3508 0.3508 1.1353 84.2952 10.3297 101.5785
0.5 0.3507 0.3475 3.5177 87.0391 15.7795 74.1790
1.0 0.0592 0.0608 9.4320 87.4193 23.9041 63.1585

(30,6) 0.1 0.4421 0.4415 1.0075 92.4825 22.7256 105.2099
0.5 0.5093 0.4976 3.2371 96.5627 32.3179 74.9461
1.0 0.0279 0.0235 7.8563 97.8817 40.3796 63.5097

(40,6) 0.1 0.4825 0.4819 0.9025 86.8301 24.5267 106.6997
0.5 0.7322 0.7202 3.3361 88.5751 38.0846 80.4769
1.0 0.1678 0.1678 8.5239 88.7917 50.9535 70.6248

We next compare the performance of all the heuristic policies by varying γ = 0.67, 0.33, 0.1.

When γ = 2
3 , the point estimates of the transition probability distribution is uniform, whereas

when γ is close to zero the distribution becomes deterministic. Table 4 shows how the performance

of the indices changes with uncertainty (γ) for a given level of ambiguity (β) and discount factor

(δ). We vary β = 0.1, 0.5, 1 to show low, medium, high ambiguity levels respectively. Table 4 shows

that RI and LI policies outperform the NRI, MYO, and CON policies for different uncertainty

and ambiguity levels. We find that the RI and LI policies perform near optimal for various levels

of uncertainty (γ) and ambiguity (β). Whereas, the NRI policy performs better at low level of

ambiguity for all levels of uncertainty.
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Table 4: % Gap (δ = 0.95)
(N,S) β γ LI (%) RI (%) NRI (%) MYO (%) CON (%) UB

0.1 0.10 0.0492 0.0492 0.3560 84.1284 2.3830 117.5610
0.33 0.2118 0.2112 0.2883 85.7835 6.0880 84.7780

(10,6) 0.67 0.1459 0.1459 0.6931 87.6012 13.0936 58.3055
0.10 0.1501 0.1501 3.6890 87.3399 8.4946 61.8857

1.0 0.33 0.0453 0.0491 2.5863 88.8776 14.5199 44.0211
0.67 0.8815 0.8815 1.1497 89.8436 18.1786 38.0787
0.10 0.0914 0.0914 0.2202 85.7580 6.0463 134.2527

0.1 0.33 0.3754 0.3754 0.6787 88.8946 10.7306 100.5750
0.67 0.4255 0.4196 0.8363 92.1123 17.9561 72.9551

(20,6) 0.10 0.3153 0.3153 3.2342 91.2877 13.0274 77.4274
1.0 0.33 0.0164 0.0133 3.0316 93.5058 22.6043 57.8670

0.67 0.0305 0.0305 9.8970 94.4082 40.0821 51.8860
0.10 0.1597 0.1597 0.4742 82.6907 9.5125 136.7363

0.1 0.33 0.3608 0.3607 0.9270 84.9939 17.8691 105.3124
0.67 0.7365 0.7122 1.7942 86.9983 30.2916 80.9258

(30,6) 0.10 0.4471 0.4406 6.3301 87.3291 23.5304 84.4796
1.0 0.33 0.0892 0.0784 6.0151 88.7002 37.3583 67.4664

0.67 0.3786 0.3786 18.2438 89.2283 49.9370 60.3755

Overall since the gaps obtained from LI and RI are consistently less than 1% for all the instances,

we can conclude that they are both near optimal heuristic policies for the robust SPS problem.

Evaluating the Lagrangian indices is computationally less expensive than computing the Robust

indices. Therefore, the LI policy is a suitable heuristic for the SPS problem.

7. Conclusion

The RMAB problem can be modeled as a game between the controller and nature. We see that the

presence of nature as an adversary makes the transitions of arms dependent on the states of the

other arms. We show that the RI policy is not optimal but performs better than the MYO or the

NRI policies for the SPS problem. We propose the LI policy that is obtained by solving an MAB

problem in which we relax the constraint that one arm has to be selected in every decision epoch for

the RMAB problem. All the heuristics are evaluated empirically on randomly generated instances

of the SPS problem. We find that the LI and RI policies are comparable in their performance and

near optimal, but the RI policy is computationally more expensive than the LI policy. Hence, the

LI policy would be the preferable heuristic policy for the SPS problem.

There are many possible extensions for the RMAB problem. These include all the variants

of the classical MAB problem. For instance, resources might have to be allocated among more

than one project at a time (Pandelis and Teneketzis [21]), new projects might arrive (Whittle
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[28]), all projects may change state (Whittle [29]), or there might be constraints linking the bandits

(Denardo, Feinberg and Rothblum [10]). Studying the results for these variants in a robust setting is

an avenue for future work. On the other hand, our numerical results are based on the assumption

that the ambiguity set is given by the Kullback-Liebler divergence from the point estimate of

transition probabilities. Another possible extension could be to analyze the performance of the

LI and RI policies under other ambiguity models. Finally, the robust formulation cares about the

worst-case scenario, which might be regarded as an extreme case. Therefore, future research could

focus on finding formulations and policies that balance the maximum expected reward and the

worst-case.
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