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Abstract

Zara holds a clearance period for several weeks after each of its two annual selling sea-
sons. Due to restrictions in shipping capacity, allocation decisions for the remaining warehouse
inventory starts 4-6 weeks prior to the clearance period. Our work addresses the problem of
dynamically coordinating inventory and pricing decisions for unsold merchandise during the last
month of the regular season and then clearance sales. The inventory allocation prior to mark-
downs is particularly challenging because it is a large-scale optimization problem and countries
“compete” for scarce inventory. Moreover, there are many business rules that must be satis-
fied. Until recently, the decision process used by Zara for end-of-season inventory allocation
and clearance pricing was essentially manual and based on managerial judgment. We propose a
model-based approach that builds on a deterministic approximation. The deterministic problem
is still too large so it is further broken down into an aggregate master plan and a store-level
model per-country with feedback recourse between the two levels. After a working prototype
of the new tool was completed, we performed a controlled field experiment during the 2012
summer clearance to estimate the model’s impact. The controlled experiment showed that the
model increased revenue by 2.5%, which is equivalent to $24M in additional revenue. Given that
unsold inventory is sunk at the time of clearance sales, the additional revenue translates directly
into profits. The implementation of the tool coincided with the launch of Zara’s online portal.
We discuss how the model-based process was adjusted to accommodate this new channel.

1. Introduction

With nearly 1,700 stores in 70+ countries and e9.8B in annual sales (2012), Zara is the flagship

chain of Spain’s Inditex Group, one of the most recognized global brands worldwide, and the

∗corresponding author, felipe.caro@anderson.ucla.edu
†Acknowledgements: many people at Inditex helped in this project, including Miguel Dı́az, José Manuel Corre-
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world’s leading fast-fashion retailer. The key defining feature of Zara’s fast-fashion retail model

consists of novel product development processes and a supply chain architecture relying more

heavily on local cutting, dyeing and/or sewing, in contrast with the traditional outsourcing of these

activities to developing countries. While local production increases labor costs, it also provides

greater supply flexibility and market responsiveness: Zara continuously changes the assortment of

products displayed in its stores, and offers on average 8,000 articles in a given year, compared to

only 2,000-4,000 items for key competitors (Caro 2012). This increases Zara’s appeal to customers,

who are reported to visit its stores 17 times per year on average, compared to 3 to 4 visits per year

for competing (non fast-fashion) chains.

Zara holds a clearance period for several weeks after each of its two annual selling seasons.

Due to restrictions in shipping capacity, allocation decisions for the remaining warehouse inventory

start 4-6 weeks prior to the clearance period. Our work addresses the problem of dynamically

coordinating inventory and pricing decisions for unsold merchandise during the last month of the

regular season and then clearance sales. This problem is both important and challenging: Because

of Zara’s short design-to-shelf lead times, clearance sales admittedly account for a smaller fraction

(15%) of total revenue compared to more traditional retailers. This fraction of sales is comparable to

Zara’s relative net margin however, so that the success of clearance sales has a substantial impact on

Zara’s profits in any given season. While Zara’s end-of-season problem thus shares common features

with that of a traditional retailer, it is however more challenging in some respects. Namely, the

number of articles for which inventory and markdown decisions must be made is larger, with each

individual article initially available in smaller quantities, and there is less historical price response

data due to a lack of promotions during the regular season. The inventory allocation prior to

markdowns is particularly challenging because of problem size and countries “compete” for scarce

inventory. Moreover, there are many business rules that must be satisfied.

Until recently, the decision process used by Zara for end-of-season inventory allocation and

clearance pricing was essentially manual and based on managerial judgment. The inventory deci-

sions were centralized and made based on previous year sales and the markdowns in each country

were handled by the country manager. There was no model supporting the inventory decision, and

though all countries followed the same guidelines and were supervised by the same pricing team

(which included Zara’s CFO), the markdown decisions still largely depended on the experience of

individual country managers. The origins of these guidelines were mostly historical rather than

being based on revenue maximization. In fact, the information made available to decision makers

(e.g., days worth of sales left in inventory for each category) tended to promote instead the objective
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of minimizing unsold inventory at the end of the clearance period.

In our model-based approach, we first formulated a dynamic program corresponding to the

multi-period and multi-product inventory and pricing coordination problem for a product group

within a given country using revenue maximization as the objective. To overcome the curse of

dimensionality, we then used the certainty equivalent technique to approximate the profit-to-go

(see Gallego and van Ryzin 1994 and Smith and Achabal 1998). The problem was still too large so

it was further broken down into an aggregate master plan and a store-level model per-country with

feedback recourse between the two levels. This approximation reduced the formulation to a sequence

of linear mixed-integer programs with a shortest-path structure that could be solved efficiently by

a commercial solver. The second step in our methodology was to build a price response forecasting

model feeding into the optimization module. The forecast follows a two-stage procedure similar to

the method described in Smith et al. (1994). For each article, first we determine the regular season

demand rate using a regression model where the explanatory variables are the size of the initial

purchase, the number of weeks since the product introduction, the demand rate from the previous

period, and the aggregate inventory level. In the second stage, we obtain the demand residual

that cannot be explained by regular season variables and regress it against the price markdowns

to obtain the demand elasticity. To predict sales in the first week of the clearance period, we use

the elasticity determined with data from the two most recent years. For subsequent periods, the

elasticity can be computed using current data.

After a working prototype of the new pricing tool was completed, we organized a controlled field

experiment during the 2012 summer clearance to estimate the model’s impact. The pilot showed

that the model increased revenue by 2.5%, which is equivalent to $24M in additional revenue if the

model had been used for all countries and products in 2012. This financial impact is explained by

the model’s ability, relative to the legacy process, of maximizing revenue rather than getting rid of

stock. Given that unsold inventory is sunk at the time of clearance sales, the additional revenue

translates directly into profits. The pilot was followed by the implementation of a decision support

system (DSS), which coincided with the growth of the online channel that had been launched in

September of 2010 (see Caro 2012). The emergence of this new channel posed some challenges that

are discussed in §5.5 and it represented Zara’s first steps into omnichannel retailing.

There are several streams of literature related to our work. At the core, there is the interplay

between inventory and pricing. Elmaghraby and Keskinocak (2003) and Chan et al. (2004) provide

well-cited surveys on pricing with inventory considerations. Most of the early work has been

theoretical for a single item and a single location, such as in Federgruen and Heching (1999) and
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Chen and Simchi-Levi (2004). One notable exception is Bitran et al. (1998), which considers a single

item but allows for inventory transfers across stores and the model was tested in a real setting,

though it did not lead to an implementation. More recently, Craig and Raman (2016) report

the implementation of a markdown model to aid store liquidation. Interestingly, this model is

formulated in terms of inventory value rather than units, similar to Zara’s legacy process described

in §2, and it allows for inventory consolidation and store closures. Smith and Agrawal (2017)

study a similar problem for a single item and multiple stores with inventory consolidation assuming

continuous deterministic demand.

The classic revenue management literature is also relevant. In this stream, pricing policies

account for the remaining inventory, which gets depleted with demand but otherwise it is not an

endogenous decision. Here there has been progress in modeling customer choice across multiple

products. For instance, Dong et al. (2009), Akçay et al. (2010), and Li and Huh (2011) consider

pricing with product substitution for a single store. Finally, the literature on transshipments ignores

pricing decisions and instead focuses on inventory balancing across multiple locations in a network

(see Paterson et al. 2011 and Meissner and Senicheva 2018 and the references therein).

The contributions of this work to the retail operations literature can be summarized as follows:

1. This work constitutes an application of inventory control and revenue management to the

retail business strategy of fast-fashion adopted by companies that include Zara, H&M and

Mango. This strategy involves continuously changing assortments, small production batches,

and minimal in-season promotions. Its clearance pricing problem is thus particularly chal-

lenging because it involves comparatively more different articles of unsold inventory with less

price data points than other retailers.

2. Our model coordinates inventory and pricing for multiple products and multiple locations.

The implementation spans Zara’s entire product assortment and network of stores. We are

unaware of any other documented implementation at a similar scale. The development and

deployment of the model coincided with the launch of Zara’s online portal, which added an

omnichannel dimension with its corresponding challenges.

3. Similar to Caro et al. (2010), the methodology followed to estimate the implementation im-

pact involved a live pilot implementation experiment that was carefully designed to control for

external factors. This rigorous methodology is remarkable because the impact of publicly de-

scribed Operations Research (OR) practice work is usually estimated with more questionable

“before versus after” comparisons which completely ignore the fact that many other factors
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besides the OR work being described may also be affecting the difference in performance

observed in the “after” period.

4. The model has also had a substantial qualitative impact on the way country managers think

about end-of-season sales, and the model output generates new discussions in which managers

need to justify their inventory allocation and price decisions with stronger arguments. Finally,

from a cultural standpoint this work has triggered a realization of the strategic importance of

OR and revenue management within Zara/Inditex; a telling fact is that other brands within

Inditex, such as Pull & Bear, are interested in using a similar tool.

The chapter is organized as follows. In §2 we describe the legacy process that Zara used to

allocate inventory prior to clearance sales. In §3 we explain the demand estimation approach, and

then in §4 we introduce the main optimization model to coordinate inventory and pricing decisions.

In §5 we discuss several business rules and implementation challenges that had to be considered.

The impact of the model is reported in §6 and we conclude in §7. Some of the data presented in this

paper has been disguised to protect its confidentiality, and we emphasize that the views presented

in this paper do not necessarily represent those of the companies and institutions with which its

authors are affiliated. In particular, the financial and operational impact estimations provided here

were performed independently by the paper’s authors and do not engage the responsibility of the

Inditex Group, which advises that any forward-looking statement is subject to risk and uncertainty

and could thus differ from actual results.

2. Project Genesis and the Legacy Inventory Distribution Process

The collaboration between Zara and academia started in August of 2005. The relationship was

initiated by the first author of this chapter. It began with a project on how to allocate inventory

during the regular season and since then it has led to several other projects that have advanced the

use of business analytics in retail operations. As part of the collaboration, Zara became a member

of MIT’s Leaders for Global Operations (LGO) program and more than a dozen LGO students have

spent time at Zara’s headquarters working on analytics as part of their internship. More details of

this collaboration between industry and academia are given in Caro et al. (2010).

Until 2012, Zara was using a manual process to allocate inventory prior to clearance sales. Here

we formalize this legacy process, which was used as a benchmark for the model-based process that

is introduced in the next sections. Note that the legacy distribution process takes into account cus-

tomers’ price sensibility and future markdown decisions implicitly through its input parameters (for
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instance, see the effort estimation below). In other words, the interaction between inventory and

pricing decisions is acknowledged but these decisions are not explicitly coordinated nor optimized

simultaneously.

The inventory distribution process takes place prior to clearance sales. It usually starts roughly

one month in advance during the regular season and ends at the beginning of clearance sales. For

simplicity, this inventory planning period that overlaps with the regular season is denoted period

0. We first introduce the notation and define the parameters used in the legacy process. Note that

this process is repeated weekly during period 0 and the parameters are updated as clearance sales

approaches.

2.1 Indices and Index Sets

• m ∈M: countries in the distribution network.

• j ∈ J : stores. Let m(j) denote the country of a store j. Let T (m) ⊆ J denote the set of

stores in county m.

• a ∈ A(m): local warehouses in country m.

• r ∈ R: individual articles aggregated at the model/quality level.

2.2 Parameters

• U0
j =

∑
r∈R

pTm(j)rI
0
rj : inventory available at store j (I0rj) valued at regular season prices (pTmr)

of the respective country m(j), where T denotes the regular season.

• U0
m =

∑
a∈A(m)

∑
r∈R

pTmrI
0
ar: inventory available at the local warehouses (I0ar) in country m valued

at regular season prices in that country.

• U0 =
∑
r∈R

pTmrI
0
r : inventory available at the central warehouses (I0r ) valued at regular season

prices in Spain (here m = Spain).

• Mj : estimated shrinkage (in Spanish merma) at store j valued in EUR.

• V 0
j := V 0

j,prev

(
V −4j

V −4j,prev

)
: estimated sales (in EUR) at store j in the remaining weeks prior to

clearance sales. V 0
j is computed by cross-multiplication (rule of three). For instance, suppose

the regular season has 20 weeks and there are three weeks left before clearance sales start.

Then, V 0
j,prev are previous year sales in the last three weeks of the regular season, V −4j are
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sales in the most recent four weeks, i.e., weeks 14-17 of the current regular season, and V −4j,prev

are sales in the same four weeks but in the previous year.

• Vj := Vj,prev

(
V −4j

V −4j,prev

)
: estimated sales (in EUR) at store j during clearance sales, valued at

regular season prices. Vj is computed by cross-multiplication just like V 0
j except that Vj,prev

is the actual inventory sold in clearance sales in the previous year, valued at full price.

• Ej : effort assigned to store j, i.e., the amount of revenue that store j should generate during

clearance sales (valued at regular season prices).

2.3 Determining the Effort per Store

The amount of stock available in the entire network usually exceeds the total estimated sales.

Therefore, all the stores are expected to make an effort and are loaded with a surplus of inventory.

The load factor φ is computed as follows

φ =
U0 +

∑
m∈M U0

m +
∑

j∈J
(
U0
j − V 0

j −Mj

)∑
j∈J Vj

> 1, (1)

and the effort for store j is given by

Ej = φVj −
(
U0
j − V 0

j −Mj

)
. (2)

Let Bm denote the total amount of inventory that should be shipped from the central warehouses

to country m. From the previous definitions we have that

Bm =
∑

j∈T (m)

Ej − U0
m. (3)

If Bm ≤ 0, then country m already has enough inventory. It should not receive any further

shipments from the central warehouse, and therefore, it is blocked. All the blocked countries are

removed from the distribution process and are treated separately.

In order to take into account store sales capacity as well as the interaction between inventory

and markdown decisions, a final adjustment is made to the stores in non-blocked countries. For

each store j, if φVj > max{U0
j , U

1
j,prev}, where U1

j,prev is the stock (in EUR) that was available

at the beginning of clearance sales in the previous year, then Vj is decreased by 3%. If φVj <

min{U0
j , U

1
j,prev}, then Vj is increased by 3%. After removing the blocked stores and making the

final adjustments to Vj , Equations (1) and (2) are recomputed.
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2.4 Mathematical Formulation

Once the efforts per store have been computed, the next step is to decide how much will be procured

from the central warehouses and how much from the local warehouse or from other stores that have

a “negative effort”. Zara did not have an explicit rule for this, but in general transshipments were

considered undesirable so they were avoided as much as possible. Here we present an optimization

model that finds the solution that minimizes transshipments under the legacy process. The decision

variables are denoted fj to denote the flow of inventory (in EUR) from the central warehouses to

store j. Similarly, fxy represents the flow of inventory (in EUR) from x to y, where x and y

are nodes in the distribution network given by local warehouses and stores. The mathematical

formulation of the model is the following:

(LGCY ) min
∑
m∈M

∑
j,j′∈T (m)

fjj′ (4)

s.t. U0 ≥
∑
j∈J

fj (5)

Um ≥
∑

j∈T (m)

fmj ∀ m ∈M (6)

fj + fm(j)j +
∑

j,j′∈T (m(j))

fj′j ≥ Ej +
∑

j,j′∈T (m(j))

fjj′ ∀ j ∈ J (7)

fj , fmj , fjj′ ≥ 0 ∀ j, j′ ∈ J ,m ∈M. (8)

The objective function (4) is the total inventory transshipments valued at regular season prices

(recall that the flows are given in EUR). Note that only transhipment within stores of the same

country are allowed, though this could be easily relaxed. Constraint (5) ensures that the shipments

from the central warehouses do not exceed the inventory available. The same is imposed in con-

straint (6) for the local warehouses. Finally, constraint (7) makes sure that the inflow to each store

is greater or equal than the respective effort assigned to that store plus the outflow.

The advantage of the legacy approach was its simplicity, which facilitated its implementation.

However, it had several shortcomings: (i) it was based on aggregate revenue, not on unit sales

by group; (ii) it ignored subsequent decisions, markdowns in particular; (iii) it mostly reproduced

the same allocation pattern from previous years, which was not necessarily optimal; and (iv) it

aimed to minimize inventory transshipments rather than maximize overall network profits. These

limitations motivated the development of the model-based solution that is described next.
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3. Demand Estimation

The proposed model-based solution is represented in Figure 1. The approach consists of demand

estimates that are the input to an optimization model. In this section we describe the former.

Figure 1: Model-based solution for coordinating inventory and markdown decisions. Figure taken

from Verdugo (2010).

Demand is estimated at the article level r and for each country independently. To simplify the

notation, in this section we omit the country subindex m. The estimation procedure is similar to

Caro and Gallien (2012). Let w = 0 denote the remainder of the regular season, i.e., the weeks

prior to clearance sales when the inventory (re)allocation takes place. Let w ≥ 1 denote the periods

of clearance sales. Zara starts inventory planning for clearance sales about four weeks in advance.

Therefore, period w = 0 can be roughly one month, whereas the periods w ≥ 1 during clearance

sales are usually one week. Let λ̃wrk be the demand rate in period w at price pk given by the equation

λ̃wrk = λ̂wr · exp

(
β̃w4 ln(min{1, Î

w
r

f
}) + β̃w5 ln

( pk
pTr

))
. (9)

where λ̂wr represents the base demand, Îwr is an estimate of the inventory level at time w that is

discussed in §5.4, pTr is the regular season price, and f is a broken assortment parameter as in

Smith and Achabal (1998).
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We call λ̂wr the base demand because it has no broken assortment and pricing effects. It is

updated using the recursion:

λ̂0r = exp
(
β̃0r + β̃1 ln(Cr) + β̃2A

0
r + β̃3 ln(λ̂Tr )

)
(10)

λ̂wr = exp
(
β̃0r + β̃1 ln(Cr) + β̃2A

w
r + β̃3 ln(λ̂w−1r )

)
, w > 1, (11)

where Cr is the size of the initial purchase, Awr is the number of days since article r was introduced

at the stores, and λ̂Tr is the average demand rate over the regular selling season. Note that λ̂0r

should be smaller than λ̂Tr , in which case the base demand sequence λ̂wr decreases with w (this is

assuming that β̃2 < 0 and 0 < β̃3 < 1). Note that β̃0r, β̃1, β̃2, β̃3 are parameters computed from

the current regular season, whereas β̃w4 , β̃
w
5 are the parameters for period w obtained from previous

season data. See Caro and Gallien (2012) for more details on the estimation of these coefficients.

A key parameter in the optimization model presented in the next section is the expected sales

for article r in period w at price pk, denoted Ewr (pk). To estimate Ewr (pk), let S(r) denote the size-

color combinations available for article r ∈ R. We assume that customers demanding SKU rs at

price pk at store j in period w arrive according to a Poisson process with arrival rate αrsjλ̃
w
rk, where

λ̃wrk is given by the forecast formula (9) and αrsj is the sales weight of SKU rs at store j (see §5.3

for a discussion on computing this parameter). Let Ewrj(pk) =
∑

s∈S(r) E
[
Saleswrsj

∣∣∣pk, Îwrsj], where

Îwrsj is again an estimate of the inventory level. Then, we have that Ewr (pk) =
∑

j∈J E
w
rj(pk). For

w = 0 the price is fixed at the regular-season price pTr , so we write E0
rj and E0

r and the calculation

relies on the actual inventory levels I0rsj .

The estimation of sales for every article, period, and country, is computationally intensive.

The computation can be simplified by identifying a group of representative articles with ample

inventory available. For this subset, the sales estimates Ewr (pk) are computed for every period and

then country-specific decay factors are obtained by minimizing

∑
r,k,w≥2

(
κw−1 − Ewr (pk)

E1
r (pk)

)2

. (12)

To avoid confusion, note that κw−1 represents κ to the power w − 1 (in contrast with the rest of

the notation, here w is not a superscript). The interpretation of the parameter κ is the decay in

sales from one period to the next when the price does not change. Once κ is computed, the sales

estimate for the other articles can be approximated by Ewr (pk) ≈ κw−1E1
r (pk).

In general, the quality of the forecast generated substantial debate at Zara. In fact, initially,

the forecast error received most of the attention in the meeting discussions, but it gradually gave

way to the actual inventory and pricing decisions which was the original purpose of the model.
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This transition was facilitated by showing through a few simple simulations that, even with an

imperfect forecast, the model would still make inventory allocations that were near optimal in

terms of revenue. This idea has been studied further in Besbes et al. (2010) and Elmachtoub and

Grigas (2017).

4. Optimization Model

4.1 Multiple-Item Discrete-Price Formulation

The multiple-item model builds on the open-loop formulation (47) given in the appendix. The

open-loop formulation is a starting point but it ignores many practical considerations that are

relevant to Zara, which are here enumerated:

• There is a discrete set of prices p0 ≤ p1 ≤ . . . ≤ pK , where p0 is the salvage value at the end

of clearance sales. The number of feasible prices K is in the order of 40 for a typical product

group.

• Items are shipped from the central distribution centers located in Spain and there is a shipping

cost associated that is given as a percentage cM of the selling price.

• The inventory allocation takes place 3-4 weeks prior to the beginning of clearance sales.

Therefore, the regular-season sales that take place during that remaining month must be

taken into account because they deplete the inventory that will be available for clearance.

• The inventory that is already at the store must be taken into account. Similarly, some

countries might have a local warehouse that holds inventory.

• There are multiple items in a product group. Items that had the same regular-season price

form a product cluster, which is the unit of analysis for the purpose clearance sales. The

price of a cluster can only decrease over time. The price hierarchy among clusters must be

maintained throughout clearance sales. In other words, if cluster n had a higher regular-

season price than cluster n′, then the price of cluster n′ is always equal or lower than the

price of cluster n during clearance sales.

4.2 Master Problem and Discussion

The formulation of the master problem (MP ) here below is for a single product group across all

countries. A product group (e.g., T-shirts or woman blazers) is partitioned into product clusters
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n ∈ N . A cluster n corresponds to all the articles r ∈ Rn that were sold at the same price

during the regular season. We use the following notation: w = 1 and w = W represent the first

and last periods of clearance sales. We use MR as a shorthand notation for M×R. Also, let

W := {w ∈ N : 1 ≤ w < W} and K := {k ∈ N : 1 ≤ w ≤ K}.

For the decision variables, xwmnk ∈ {0, 1} indicates whether cluster n in country m should

be sold at clearance price pk or lower during pricing period w ∈ W, with xwmn0 = 0, for all

(m,n,w) ∈MNW. The auxiliary variable ywmnk ∈ {0, 1} indicates whether cluster n in country m

should be sold at clearance price pk during period w; λwmrk represents the expected sales for article

r in country m in period w ∈ W if sold at price pk; λ
0
mr has a similar interpretation but for the

regular season; and Iwmr represents the inventory level of article r in country m in period w. In

contrast to the legacy process, in this distribution model the inventory flow is expressed in terms

of units (as it actually occurs in practice) instead of EUR.

(MP ) max
∑
m∈M,
r∈R

(
pTmrλ

0
mr +

∑
w∈W,
k∈K

pkλ
w
mrk + p0I

W
mr − cMpTmr qmr

)
(13)

s.t. ∑
m∈M

qmr ≤ I0r ∀ r ∈ R (14)

λ0mr ≤ E0
mr ∀ (m, r) ∈MR (15)

λwmrk ≤ Ewmr(pk)y
w
mnk ∀ (m,n, k, w) ∈MNKW, r ∈ Rn (16)

ywmnk = xwmnk − xwmnk−1 ∀ (m,n, k, w) ∈MNKW (17)

xwmnk−1 ≤ xwmnk ∀ (m,n, k, w) ∈MNKW (18)

xwmnk ≤ xwmn+1k ∀ (m,n, k, w) ∈MNKW (19)

xwmnk ≤ xw+1
mnk ∀ (m,n, k, w) ∈MNKW (20)

I1mr = I0mr + qmr − λ0mr ∀ (m, r) ∈MR (21)

Iw+1
mr = Iwmr −

(∑
k≥1

λwmrk

)
∀ (m, r, w) ∈MRW (22)

λ0mr, λ
w
mrk, I

w
mr, qmr ≥ 0 ∀ (m, r, k, w) ∈MRKW (23)

xwmnk, y
w
mnk ∈ {0, 1} ∀ (m,n, k, w) ∈MNKW. (24)

The objective function (13) is the total expected revenue until the end of clearance sales minus

the shipment cost from the central warehouses. Constraint (14) ensures that the shipments made

from the central warehouses do not exceed the inventory available. Constraints (15) and (16) make
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sure that expected sales does not exceed expected demand. Constraints (17) and (18) follow from

the definition of the ywmnk and xwmnk variables. Constraint (19) ensures that the initial ordering

of clusters by prices is maintained throughout the clearance period. Constraint (20) ensures that

the clearance sales price for any cluster decreases over time. Constraints (21) and (22) implement

the inventory dynamics. Note that the initial inventory I0mr is an input value to the optimization

model and corresponds to the inventory available of article r in country m, i.e., I0mr =
∑

a∈A(m) I
0
ar+∑

j∈T (m) I
0
rj . Finally, constraints (23) and (24) impose the nonnegative and binary requirements

for the decision variables.

The master problem (MP ) does not explicitly consider product substitution, but some of these

effects are indirectly accounted for in the model. On the one hand, horizontally differentiated

products within a group usually have the same regular season price, so in the model they are indis-

tinguishable because they belong to the same cluster n. On the other hand, vertically differentiated

products belong to different clusters because the quality is different, and therefore, the regular sea-

son prices are different. Constraint (19) preserves the relation among clusters making sure that

higher quality products are never cheaper than lower quality products. Note that this is consis-

tent with the optimal structure of the pricing policy when there is substitution across vertically

differentiated products, see Akçay et al. (2010).

There are some additional constraints that Zara considered to be optional for the purpose of

planning the inventory allocation prior to clearance sales:

• Minimum shipment. For some countries, there could be a minimum shipment Qm, e.g., to

justify a full truckload:
∑
r∈R

qmr ≥ Qm, ∀ m ∈M.

• Broken assortment effect. This constraint captures the effect that the demand rate of an

article usually declines when the inventory goes below a certain level f that could be country

dependent:

λwmrk ≤
(

1− µm + µm
Iwmr
f

)
Fwmr(pk) ∀ (m, r, k, w) ∈MRKW, (25)

where Fwmr(pk) = Ewmr(pk)/(min{1, Îwmr/f})β̃4,m and µm = (3ρ2m + 9ρm)/(2ρ2m + 6ρm + 4) with

ρm = β̃4,m. See Caro and Gallien (2012) for more details on this constraint.

• Forced liquidation. This constraint is a way to ensure that the model liquidates at least a

fraction ν of the total stock available in the network:

∑
r∈R

(
I0r −

∑
m∈M

qmr

)
+

∑
(m,r)∈MR

IWmr ≤ (1− ν) ·

∑
r∈R

I0r +
∑

(m,r)∈MR

I0mr

 . (26)
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Zara has stores in more than 70 countries and each product group can have hundreds of articles

in a given season. Moreover, the combinations of prices and clearance periods are in the order

of 400, which makes the model (MP ) a large-scale optimization problem. Common aggregation

techniques can be used to reduce the size of the model. For instance, constraints (14)-(16) and (21)-

(22) can be aggregated by cluster, or at least the articles within a cluster that have little inventory

available can be aggregated into a “meta article” (see §5.1). Alternatively, the number of feasible

prices K can be reduced from 40 to about half. Note also that constraint (14) can be relaxed in

a Lagrangian fashion and then the model decomposes into smaller subproblems per country. Zara

used some of these techniques to speed up the computational time.

5. Business Rules and Implementation Challenges

5.1 Balanced Distribution

During the development of this project, Zara was concerned that a pure profit maximization ap-

proach could hinder fairness/equity among stores. This tension is well-documented in distribution

problems, see Mandell (1991). Moreover, preliminary runs of the model showed that it had a

tendency to ship most of the remaining inventory to just a few countries. Therefore, additional

constraints were added to the optimization (MP ) to achieve a more balanced distribution.

At the end of the season there tends to be a few articles that represent most of the inventory

in each cluster. Therefore, it is important to avoid solutions that send to much inventory of the

same article to a particular store. Here we will use r to represent an article for which there is

abundant inventory at the warehouse. A simple rule to identify these articles would be to check

whether the initial inventory at the warehouse I0r is greater than the number of store times the

number of sizes in which r is available (intuitively, this means that there is enough inventory to

send a full set of sizes — maybe of different colors — to each store). The remaining articles that

do not have abundant inventory are grouped in a meta article in each cluster that we denote by

r = 0. In other words, article 0 in each cluster represents the true leftovers. As an example,

consider the table in Figure 2 that is taken from one of the product groups. Assume that there

are 1659 stores. The articles in the table are available in four sizes, so the cutoff to qualify as

an article with abundant stock is 1659 × 4 = 6639. Therefore, in cluster 1590 there are only

leftovers (R1590 = {0}), whereas in cluster 1990 there are four abundant articles plus the leftovers

(R1990 = {0, 1509/120, 264/967, 5646/200, 5646/201}).

For each article r, let µr be the percentage of the initial purchase that has been sold during the

regular season. For the meta article, µ0 can be computed as a weighted average of the individual
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Figure 2: Example of two clusters. An article corresponds to a model-quality pair.

percentages. Let Salesrj be the regular season sales of article r at store j. Then, we define the

overall and the country-specific share of store j for article r as follows:

dmr = µr

∑
j∈T (m) Salesrj∑
j′∈J Salesrj′

+ (1− µr)
∑

j∈T (m)

dj , (27)

dmrj = µr
Salesrj∑

j′∈T (m) Salesrj′
+ (1− µr)dmj , (28)

where dj =
PrevClearSalesj∑

j′∈J PrevClearSalesj′
, dmj =

PrevClearSalesj∑
j′∈T (m) PrevClearSalesj′

and can be replaced by

similar quantities at the product group level if they are available. Note that in Equations (27) and

(28), if µr is close to one, then more weight is given to recent sales, whereas if µr is closer to zero,

then last year’s performance has more weight.

We can now define the maximum country allocation for article r:

bmr =

[(
I0r +

∑
m′∈M

I0m′r

)
dmr − I0mr

]+
∀m ∈M. (29)

If bmr is less than the minimum shipment quantity, then we redefine it and make it equal to

the minimum shipment. If bmr = 0, then that country is removed from the allocation. For the

countries that remain, we recompute bmr using Equation (29). The balanced distribution is attained

by adding the following constraint to the model (MP ):

qmr ≤ (1 + σ)bmr ∀ (m, r) ∈MR, (30)
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where the parameter σ was added as a lever to allow the user to expand the feasible set if desired.

Note that if a country has plenty of stock, i.e., I0mr is very high, then it is effectively blocked, which

is similar to the rationale of blocking countries in the legacy process (see §2) but at the article level.

5.2 Disaggregation Model

The disaggregation model (DGmr) here below must be solved for each article r within a product

group, and for each country m (it could also be solved at a more aggregate level for each cluster

n). In what follows, we consider a fixed pair (m, r) and let n(r) be the cluster of article r. The

additional parameters, decision variables, and the model formulation are introduced next.

Additional Parameters:

• Ymnj : historical realized income for cluster n at store j in previous clearance sales. The

realized income measures the ratio of the actual revenue from clearance sales to the maximum

revenue achievable by selling the inventory at regular season prices, see Caro and Gallien

(2012).

• Erj :=
∑
w≥1

∑
k∈K

Ewrj(pk) y
∗w
m(j)n(r)k: expected sales of article r at store j during the markdown

period, where y∗wmnk comes from the solution of the master problem (MP ).

• q∗mr: total shipment quantity allocated to country m. This parameter comes from the solution

to the aggregate master problem (MP ).

• brj :=

[(
q∗mr+I0m(j)r

)
dm(j)rj−I0rj

]+
: maximum store allocation of article r to store j, where

dmrj is defined in Equation (28).

Decision Variables:

• qrj : shipment quantity (in units) for article r from the central warehouses to store j.

• qmrj : shipment quantity (in units) for article r from the local warehouses in country m (if

they exist) to store j.

• qjrj′ : transhipment quantity for article r between stores j and j′.

• λ0rj , λrj : sales of article r at store j in period w = 0 and during clearance sales, respectively.
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Formulation:

(DGmr) :

max
∑

j∈T (m)

pTmr
(
λ0rj + Ymn(r)jλrj

)
− cM ·

∑
j∈T (m)

(
qrj + qmrj

)
− cS ·

∑
j,j′∈T (m)

qjrj′ (31)

s.t.

∑
j∈T (m)

qmrj ≤
∑

a∈A(m)

I0ar (32)

q0rj = qrj + qmrj +
∑

j′∈T (m)

(
qj′rj − qjrj′

)
∀j ∈ T (m) (33)

Irj = I0rj + q0rj − λ0rj ∀j ∈ T (m) (34)

λ0rj ≤ E0
rj ∀ j ∈ T (m) (35)

λrj ≤ Erj ∀ j ∈ T (m) (36)

λrj ≤ Irj ∀ j ∈ T (m) (37)

q0rj ≤ brj ∀ j ∈ T (m) (38)∑
j∈T (m)

qrj ≤ q∗mr (39)

λrj , λ
0
rj , qrj , qmrj , qjrj′ , Irj ≥ 0 ∀j, j′ ∈ T (m). (40)

The disaggregation model is a maximization problem that accounts for store transhipment,

similar in spirit to the legacy model (LGCY ). The objective function (31) is the expected revenue

minus the total transportation and handling cost due to shipping from the warehouses (cM ) and

transshipments between stores (cS). Constraint (32) ensures that the shipments from the local

warehouses do not exceed the inventory available. Constraint (33) defines q0rj , which is an auxiliary

variable that represents the net quantity of article r received at store j (note that this variable

could be negative meaning that store j sends inventory rather than receives). Constraint (34)

is an inventory balance equation. Equations (35)-(37) are newsvendor-type constraints for sales.

Constraint (38) ensures a balanced distribution as discussed in §5.1. Constraint (39) dictates that

the total amount shipped to the stores cannot exceed the quantity allocated to country m according

to the solution of the master problem (MP ). Finally, the nonnegativity of the decision variables is

imposed in constraint (40).

Note that the disaggregation model could be formulated at the SKU (color/size) level. However,

Zara opted to solve it at the article level and then the warehouse team would use its own procedure

to break down the quantities to color and sizes. Either way, the output of the disaggregation step

is the inventory allocation q∗rsj for each store.
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5.3 Disaggregation Factors

The demand rate estimation in §3 is for each article r. This rate needs to be disaggregated to the

store and SKU (color/size) level. For that, the idea is to capture the stores that do better during

clearance sales, which are not always the same than those that sell well during the regular season.

Note that for a new stores, an equivalent store has to be defined.

Let PrevClearSalesj be the sales by store j in the previous clearance sales a year ago. The

disaggregation factors that are used to disaggregate the demand rate to the store and SKU level

are the following:

αrsj =

∑
w<w̃,j∈J Sales

w
rsj∑

w<w̃,s∈S(r),j∈J Sales
w
rsj

· PrevClearSalesj∑
j∈J PrevClearSalesj

, (41)

where w̃ is the current (or most recent) regular season period and S(r) represents the set of color-

size combinations available for article r. Note that the rightmost ratio depends only on j so it can

be computed separately for all SKUs. A few remarks:

• The quantity PrevClearSalesj represents sales in units, but it could also be defined in terms

of EUR, which would be closer to how it is done in the legacy process described in §2.

• One could also define PrevClearSalesgj as the previous year sales for each group g at store

j and use this value in the rightmost ratio in Equation (41). For new stores one would have

to define equivalent stores at the group level.

• An alternative is to define PrevClearSalesj as the clearance sales in the past two years.

Again, the complication would be those stores that have been open less than two years.

• For articles that have little sales data, i.e., for which most of the inventory is still at the

warehouse, the disaggregation factor can be redefined in the following way:

αrsj =
I0rs +

∑
w<w̃,j∈J Sales

w
rsj∑

s∈S(r) I
0
rs +

∑
w<w̃,s∈S(r),j∈J Sales

w
rsj

· PrevClearSalesj∑
j∈J PrevClearSalesj

. (42)

Note that the sum
∑

s∈S(r),j∈J αrsj still adds to one for all r ∈ R.

5.4 Iterative Allocation

Obtaining an estimate of the inventory Îwr at time w is a significant challenge. A first ap-

proximation is to replace sales with its expected value at regular season prices, in which case

Îwr = max
{
Îw−1r − Ew−1r (pTr ), 0

}
. This approximation ignores the inventory allocation that takes

place prior to clearance sales. Therefore, the solution of the model q∗r can be used to update
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Î 1
r = max

{
I0r + q∗r −E0

r , 0
}

, and then the model can be run again (recall that the country subindex

m is omitted in §3 so q∗r stands for q∗mr).

The computation of Îwrsj is even more involved. A simple but somewhat crude approach is

to apply the disaggregation factors αrsj to the inventory estimates Îwr . An alternative, that was

favored by Zara, is to first assume that inventory levels will remain constant at the initial levels,

i.e., Îwrsj = I0rsj , for all periods. This first approximation again ignores the inventory (re)allocation

from the optimization model. Therefore, a re-estimation is necessary, at least for the first period.

Namely, Î 1
rsj = max

{
I0rsj + q∗rsj − E

[
Sales0rsj

∣∣pTm(j)r, I
0
rsj

]
, 0
}

, where q∗rsj is the output of the

disaggregation step described in §5.2.

The iterative procedure described above essentially assumes an inventory trajectory Îwr and

produces an inventory allocation qr, which is then used to update the estimated inventory levels.

Hence, the procedure can be seen as solving a fixed point problem in qr. We did not explore the

theoretical validity of this approach, but in practice it worked very well. In fact, in our runs in the

test pilot the inventory allocation did not change much after the second iteration. Therefore, in

the final implementation only two iterations of the procedure were performed.

5.5 Online Stores

In 2010 Zara launched its online channel. That happened right in the middle of the project on

coordinating inventory and clearance sales markdowns described in this chapter. Therefore, there

was the challenge of incorporating the new channel in the model-based process. At the time, Zara

had three warehouses for online sales: EZ-Japan, EZ-Usa, and EZ-Rest. Initially, each one of these

warehouses was treated as another store in Spain, and therefore in the model they were subject

to the prices and markdowns suggested for Spain. However, as more country-specific warehouses

were opened, Zara started treating each one of these inventory locations as an additional store in

the corresponding country. This strategic decision meant that prices in both channels (online and

offline) would be the same within each country.

In the past, product returns had been accounted as negative sales that were subtracted from the

total sales. However, returns increased with the introduction of the online channel, so it became

important to separate returns from actual sales. Otherwise, the model would allocate too little

inventory to the online stores. For this reason, extra safety stock was added in the initial years for

precaution.

The addition of the online channel to the model happened seamlessly. Remarkably, most of the

online sales in the initial years came from cities or towns that did not have Zara stores, which meant
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that there was little cannibalization between the online and brick-and-mortar channels. Eventually,

there could be some degree of channel shift as online shopping becomes more prevalent, but this

effect is likely to be outweighed by the potential synergistic benefits of omnichannel retailing, as

shown in Gallino and Moreno (2014).

6. Model Impact

The first test of the model’s impact consisted in a dry run in which the model-based solution

was run in parallel to the legacy process described in §2. We compared the inventory allocations

recommended by each approach as well as the forecast errors across all the countries. The results

are summarized in Figure 3. There are two main observations that stand out. First, in 67% of

the countries the model-based solution had a smaller forecast error than the legacy process, which

showed a gain in prediction accuracy. Second, for about 79% of the countries the model-based

solution allocated more inventory than the legacy process. These were mostly smaller countries,

which showed the model’s ability to achieve a more balanced distribution (see the discussion in §4).

Figure 3: Dry-run results. Comparison of the model-based solution versus the legacy process

(percentages with respect to the total number of countries).

After a working prototype of the new allocation tool was completed, a controlled field experiment

was performed during the 2012 summer clearance to estimate the model’s impact. The overall

product assortment was split in 20 groups. The model was used to make inventory and pricing

decisions for groups 1 to 12 for all the stores in Belgium, whereas for groups 13 to 20 decisions were

made manually using the legacy process. We did the opposite in Holland – i.e. groups 13 to 20

were managed using the model – in order to remove any factors specific to the group choice in each

country. Groups 1–12 can be described as classic designs for women above twenty, whereas groups

13–20 are more fashionable products targeted to a younger audience. Products in groups 1–12 are

usually more expensive and are known to sell better in winter clearance. In contrast, groups 13–20
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have mostly cheaper products and sales do better in summer. The legacy process was used for all

groups in the rest of the countries (i.e., all countries but Belgium and Holland)

Similar to Caro and Gallien (2012), the main metric used to measure performance was the

realized income ratio (Y ), defined as the revenue generated during the end of the season and

clearance sales over the valuation of initial inventory at regular season prices. For each store in

Western Europe we computed the difference between the total realized income ratio in groups 1–12

(denoted Y1−12) minus the same metric in groups 13–20 (denoted Y13−20). This allowed removing

store-specific factors that are not attributable to the model. We averaged the differences across

all stores in Belgium to remove random factors (e.g., due to the forecast error). We did the same

in Holland, and then for all the other stores in the rest of Western Europe (RWE). The latter

represented the baseline. Therefore, by taking the difference between the averages in Belgium and

in RWE we obtained an estimate of the model’s impact in groups 1–12. Doing the same between

Holland and RWE gave the impact in the remaining groups.

The results of the pilot are shown in Table 1. The difference in the last column is the main

point of interest. As expected, this difference was positive for Belgium and negative for Holland,

and it showed that the model-based approach improved the realized income ratio by 1.8 and 0.5

percentage points in Belgium and Holland respectively. The disparate magnitude of the effects (1.8

versus 0.5) was attributed to the fact that groups 13–20 tend to sell better in summer as shown by

the negative baseline (-1.9). To confirm this hypothesis, the same experimental design was repeated

in 2012 winter clearance. The results of this second pilot are also shown in Table 1. We observed

that the baseline turned positive (5.1), the sign of the difference in the last column remained the

same for Belgium and Holland, but the magnitude of the effects reversed between the two countries

as we had expected. Hence, the model had a higher impact (in percentage points) for the groups

that were harder to sell, i.e., groups 1–12 in summer and groups 13–20 in winter.

Season Country ∆Y Baseline (RWE) Difference

Summer ’12 Belgium -0.1 -1.9 1.8

Holland -2.4 -1.9 -0.5

Winter ’12 Belgium 5.7 5.1 0.6

Holland 3.9 5.1 -1.2

Table 1: Pilot results (in percentage points). ∆Y is the average of Y1−12 − Y13−20 across stores.

The baseline is ∆Y for RWE. The last column is the difference between the two preceding columns.

The pilot in summer 2012 showed that the model increased the Y metric by 1.2 percentage points

on average, which was equivalent to a 2.5% increase in overall revenues. This result motivated the
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full-scale implementation of a DSS, which became operational in summer 2014; see appendix §B

for some screenshots of the system. In order to validate the impact of the model, we used data

prior to 2014 to run a simple linear regression in which the dependent variable was the inventory

available for allocation (in EUR) divided by the total number of stores and the independent variable

was the revenue generated at the end of the season and clearance sales divided by the total units

shipped in preparation for the clearance period. We used the estimated coefficients to predict the

revenue in summer 2014 and compared it to the actual revenue (Figure 4). Remarkably, the latter

was 2.6% higher than the prediction, which confirmed the results obtained in the pilot. Another

important observation is that the inventory left over at the warehouse was small and comparable

to the amount that had to be salvaged in prior years under the legacy process.

Figure 4: Predicted versus actual revenue in summer 2014. Axis values are omitted for confiden-

tiality reasons.

7. Conclusions

This chapter describes a model-based process to allocate stock in anticipation of clearance sales.

The model effectively coordinates inventory and pricing decisions. The model’s impact versus the

legacy process was estimated at 2.5% of revenues, which led to the implementation of a DSS that

is currently used at Zara.

There are several other differences and benefits of the model-based solution in comparison with

the legacy process. First, it finds the global optimum across all countries and stores, instead

of many local optima, and it has more granularity because it makes shipment decisions at the

article-store level. Second, the model allocates inventory to maximize revenue (as opposed to just
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liquidating stock) and it incorporates differences in price and elasticity across countries. The model

also provides a scalable process and homogeneous decision criteria. Finally, Zara’s strategic choice

of in-house model development has strengthened the company’s business analytics capabilities.

Our model, as any model, is an approximation and is based on assumptions. Therefore, we hope

that this chapter can stimulate future research on inventory and pricing coordination and related

topics. One important area for further study is explicitly incorporating substitution effects in the

demand estimation and the optimization model. Considering price-based substitution can already

be challenging because it requires more advanced choice models or estimating cross-elasticities.

Stockout-based substitution complicates matters even further as substitution can happen within

the same stores for different products or across stores for the same product. The latter is studied

in Ergin et al. (2018) for brick-and-mortar stores. With the emergence of omnichannel retailing,

substitution across channels will have to be taken into account. A related open research question

is whether pricing policies should be the same or should differ across channels. Zara opted for the

former, which facilitated the addition of the online channel to the allocation model, but the pros

and cons could be studied further (Caro et al. 2019).
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Appendix

A. Base Model: Single-Item Continuous Formulation

To gain insights, we formulate a single-item base model in which inventory decisions are treated

as continuous variables. First, consider a single-period problem with multiple countries that are

sourced from the same central depot. Let Fm(pm) be the demand in country m at price pm. Here
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we assume that demand is deterministic and given by Fm(pm) = Cm

(
pm
pTm

)−βm
where pTm > 0 is

the regular-season price for the item, βm is the constant price elasticity, and Cm > 0 is a country

specific constant that is proportional to the market size in country m. We assume that βm > 1.

The case with βm < 1 is not interesting for our purposes because the revenue increases with price,

which means that the retailer has no incentive to introduce markdowns and would rather keep the

regular-season price pTm.1

Let qm be the inventory allocated to countrym and let Jm(qm) := maxpm≥0 pm min
{
Fm(pm), qm

}
be the maximum revenue obtained by optimizing the price pm. Note that when βm > 1 the (un-

constrained) revenue pmFm(pm) is convex so standard results such as Proposition 1 in Bitran and

Caldentey (2003) do not apply. However, the (constrained) revenue pm min
{
Fm(pm), qm

}
is a uni-

modal function in pm. In fact, the revenue increases until the price is such that supply exactly

matches demand and then it decreases. In other words, the revenue has a unique maximizer that

satisfies Fm(pm) = qm. Hence, the optimal price is p∗m(qm) = pTm

(
Cm
qm

) 1
βm

. Substituting the

optimal price in the revenue function we obtain Jm(qm) = pTmC
1
βm
m q

1− 1
βm

m , which is concave in qm.

Let I0 be the total inventory available at the central depot. In the absence of additional

business requirements or constraints, the inventory allocation problem faced by the retailer can be

formulated as follows:

max
∑
m∈M

Jm(qm) (43)

s.t.
∑
m∈M

qm ≤ I0

qm ≥ 0 ∀m ∈M.

Since
∂Jm
∂qm

=
(

1− 1

βm

)
pTmC

1
βm
m q

− 1
βm

m > 0, ∀m ∈M, it follows that the constraint
∑

m∈M qm ≤

I0 must be binding. Let ν be its Lagrangian multiplier or shadow price. From the Karush-Kuhn-

Tucker conditions (Bertsekas 1999) it follows that the optimal quantities are given by

q∗m = Cm

((
1− 1

βm

)pTm
ν

)βm
∀m ∈M. (44)

Equation (44) shows that qm is increasing in Cm and pTm. Therefore, all other things being equal, it

is optimal to allocate more inventory to countries with larger market size and higher regular-season

price. If there is ample inventory I0 at the depot such that ν ≤ pTm, then qm is also increasing in

βm, so ceteris paribus, it is optimal to allocate more inventory to countries where demand is more

1When βm = 1 the revenue is constant so the pricing decision is irrelevant.
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elastic. Note that qm > 0 for all m meaning that all countries get a positive allocation. Of course,

this last observation hinges on fractional inventory being allowed.

Now consider a multi-period version of the single-item problem described above. Let w ∈ W =

{w : 1 ≤ w < W} denote a period and let Iwm be the inventory in country m at the beginning of

period w. An important feature in a multi-period setting is that the retailer can choose to “save”

inventory for a future period. To capture this decision, we introduce the variable λwm that represents

the amount of inventory withdrawn from Iwm and allocated to period w in country m. Since there

is no incentive to allocate inventory that will not sell, it follows that λwm will be equal to the sales

in period w, which is the interpretation we give to that variable in §4.2

With the additional variables, the pricing problem in country m can be formulated as the

following dynamic program

Jwm(Iwm) = max pwm min
{
Fwm(pwm), λwm

}
+ Jw+1

m (Iw+1
m ) (45)

Iw+1
m = Iwm − λwm

pwm, λ
w
m, I

w+1
m ≥ 0,

where Fwm(pwm) is the (deterministic) demand in country m for the price pwm in period w ≥ 1. Then,

allocating the inventory at the depot across countries corresponds to solving

max
∑
m∈M

J1
m(qm) (46)

s.t.
∑
m∈M

qm ≤ I0

qm ≥ 0 ∀m ∈M.

Given that the problem is deterministic, the sequential (closed-loop) optimization has an equiv-

alent simultaneous (open-loop) formulation that is given by:

max
∑
m∈M

∑
w∈W

pwm min
{
Fwm(pwm), λwm

}
(47)

s.t. I1m = qm ∀m ∈M

Iw+1
m = Iwm − λwm ∀ (m,w) ∈MW∑
m∈M

qm ≤ I0

pwm, λ
w
m, I

w
m ≥ 0 ∀ (m,w) ∈MW.

2To see this, in the formulation (45) replace min
{
Fwm(pwm), λwm

}
with a variable λ̄wm and the constraints λ̄wm ≤

Fwm(pwm) and λ̄wm ≤ λwm. With no loss of optimality one can assume that this last constraint is active because

otherwise the leftover inventory (λwm − λ̄wm) can be added to Iw+1
m so it can be sold in the next period.

26



Note that the inventory variables Iwm in the formulation above can be omitted and the non-negative

constraint Iwm ≥ 0, ∀ (m,w) ∈MW, can be replaced by qm ≤
∑

w∈W λwm, ∀m ∈M. Moreover, with

no loss of optimality one can assume that qm =
∑

w∈W λwm,∀m ∈M, so the optimization problem

(47) can be reformulated as

max
∑
m∈M

∑
w∈W

Ĵwm(λwm) (48)

s.t.
∑
m∈M

∑
w∈W

λwm ≤ I0

λwm ≥ 0 ∀ (m,w) ∈MW,

where Ĵwm(λwm) = maxpwm≥0 pwm min
{
Fwm(pwm), λwm

}
. The optimization problem (48) has the same

structure as the single-period problem (43). In particular, suppose that for country m there exists

a parameter 0 < κm < 1 such that Fwm(pwm) = κw−1m F 1
m(pwm) = κw−1m Cm

(
pm
pTm

)−βm
for w ≥ 1.3

Similar to Caro and Gallien (2012), the parameter κm represents a discount factor that captures

how prices age, regardless of the inventory level. Then, from Equation (44) the quantity allocated

to country m is given by

q∗m =
∑
w∈W

λwm = Cm
1− κW−1m

1− κm

((
1− 1

βm

)pTm
ν

)βm
∀m ∈M. (49)

Therefore, the insights from the single-period problem carry over to the multi-period case. Namely,

the allocation q∗m to a given country m increases with the market size Cm, the regular-season price

pTm, and the elasticity βm (when ν ≤ pTm). Of course, q∗m is also increasing in the parameter κm.

B. System Snapshots

3In a slight abuse of notation, κwm represents κm to the power of w. Everywhere else, we use w as a superscript to

denote the period.
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