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Problem definition: How should (apparel) retailers manage product sizes? For example, if most customers

wearing a given shoe size, such as 9.5, are willing to accept a half-size up or down, is it necessary for a retailer

to carry that size at all? Additionally, while identical products in different sizes are treated as distinct SKUs

in inventory management, they are often aggregated for assortment and strategic planning, although there is

no theoretical justification showing that such aggregation approach is sensible. In this paper, we address these

fundamental questions about size management, which have remained largely unexplored in the operations

literature. Methodology/results: We propose a choice model where each customer forms a consideration

set based on the in-stock availability of products of her best-fit size and adjacent sizes. Using a real-world

dataset from a large footwear retailer, we show that nearly 25% of the unmet demand caused by stockouts

spills over to adjacent sizes. We further solve the assortment and inventory optimization problems under

the proposed choice model. Our findings show that the optimal assortment remains unchanged regardless of

the likelihood that customers might purchase adjacent sizes. We utilize this finding and further show that

inventory policies that ignore size substitution can be (asymptotically) optimal when the demand rate is high

or the selling horizon is long. We also propose a mixed-integer program to find inventory levels that account

for size substitution and obtain higher profits in the low-demand settings. Managerial implications: We

show that the prevalent size-aggregation approach adopted in apparel retail operations is sensible in high-

demand settings such as e-commerce. In contrast, when the expected demand over the selling horizon is low,

size substitution can be relevant and should be taken into account in stocking decisions.

Key words : retail operations; demand substitution; apparel product size; stockout; choice modeling;

fashion; assortment and inventory optimization.
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1. Introduction

In recent years, firms and academia have witnessed the success of operational models in the apparel

industry. Various analytical models have been proposed to improve operations efficiency and create

value (Caro and Mart́ınez-de Albéniz 2013). A cornerstone of these models is product demand

estimation, which informs critical decisions such as inventory allocation (Caro and Gallien 2010,

Caro et al. 2010), price markdown optimization (Caro and Gallien 2012), and initial shipments

from warehouses to stores (Gallien et al. 2015).

The most common approach in the operations management literature to estimate demand and

product substitution is the following. First, a “product” is viewed as the aggregation across sizes of

stock keeping units (SKUs) of the same style. Second, demand is estimated based on the aggregated
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units (Boada-Collado and Mart́ınez-de Albéniz 2020). In this approach, demand substitution is

restricted to happen only between product styles. Note that the style subsumes all the information

about an apparel product, including its brand, design, and color, except its size. Put differently; the

style includes all the fashion characteristics of the product. The aggregation approach is particularly

sensible when considering a utility-based demand model like the multinomial choice model (MNL)

in which a product’s utility is directly linked to its fashion design, not its size.

However, such size-aggregation approach can easily overlook product substitutions that are

induced by the unavailability of certain sizes. It has been shown that the unavailability of sizes can

cause the broken assortment effect (Smith and Achabal 1998, Caro and Gallien 2010, 2012), which

refers to the empirical observation that a product’s sales rate decreases when the total inventory

drops below a certain threshold, possibly because some sizes become unavailable. Furthermore,

research in economics, marketing, and operations management has shown that failing to account

for stockouts biases demand estimation (Campo et al. 2000, Che et al. 2012, Deng et al. 2022) and

negatively impacts profitability (Musalem et al. 2010).

Most importantly, demand substitution can happen between sizes. When the desired product is

out of stock, customers may consider products of adjacent sizes with the same fashion style, which

we will call size substitution from here onward. Using a difference-in-differences approach and a

dataset from one of the largest sports footwear retailers in China, Li et al. (2023) empirically show

that 28.6% of the unmet demand of an out-of-stock footwear product spills over to the adjacent

sizes of the same style. In principle, a demand model estimated by the size-aggregation approach

would ignore size substitution and would not be able to assess how it affects stores’ profit and

operational performance.

Given that product sizes play a vital role in apparel retail operations and size substitution

has been observed in consumer choices, we have the following research question: when does size

substitution matter and when can it be put aside? To illustrate this, imagine a retailer managing

footwear inventory. If most customers who wear size 9.5 are willing to accept a half-size up or

down, is it necessary to stock that size at all, or should the retailer allocate inventory to adjacent

sizes instead, anticipating substitution? More broadly, how does size-based demand substitution,

alongside the more commonly studied style-based substitution, influence downstream operational

strategies? To address these questions, we take a prescriptive approach: we first propose a choice

model, estimate it using real-world data, and analyze its implications for assortment and inventory

optimization. Specifically, the paper makes the following contributions:

1. A New Choice Model (Section 3): We propose a novel choice model, called the style-size

model, to model consumers’ decision-making process in purchasing apparel products. In this

choice model, each customer is characterized by a tuple (s,σ,α), where s is the customer’s
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best-fit size, σ ∈ {+,−} implies either the larger or the smaller adjacent size is the customer’s

second best-fit size, and α captures the customer’s sensitivity to the lack of fit, i.e., the

disutility for wearing a shoe in an adjacent size that does not fit perfectly. When facing a

set of products, the customer (s,σ,α) first forms a stock-induced consideration set based on

the products available in the best-fit size s; if the best-fit size is unavailable, the customer

would consider the adjacent size of the same style but penalizes them with a utility discount

α. The customer then follows a multinomial logit (MNL) model to select a product from the

consideration set.

2. Model Estimation (Sections 4 and Appendix A): We develop an expectation-

maximization (EM) algorithm for model estimation, which iteratively solves a concave max-

imization problem while improving the likelihood at each step. Due to space constraints, we

defer the details of the proposed EM algorithm to Appendix A. Using a dataset from a large

footwear retailer, we estimate the style-size choice model and demonstrate that at least 24.9%

of unmet demand due to stockouts spills over to adjacent sizes of the same style. Further-

more, we show that the proposed style-size choice model has strong representational power

and outperforms benchmark models in out-of-sample prediction accuracy.

3. Assortment and Inventory Optimization (Section 5): We consider the assortment and

inventory optimization problems under the proposed style-size choice model. We first show

that the optimal assortment is invariant to customers’ size sensitivity. That is, the optimal

assortment is the same regardless of whether customers are likely to switch to adjacent sizes

or less likely to do so. We then discuss the inventory optimization problem in which stockouts

can trigger size substitution. Building on our result on the optimal assortment, we show that

the size substitution effect is negligible when the planning horizon is long or customer demand

is high, i.e., in the asymptotic regime. For the non-asymptotic regime, we first show that size

substitution can affect profits and should be taken into account in stocking decisions. Then,

we propose a mixed-integer program that captures the size substitution effect. In a numerical

study we show that this policy performs well in the non-asymptotic regime, and subsequently

we also prove that it is asymptotically optimal. All in all, our results provide guidance on

when size substitution matters and when it does not.

Finally, we review the related literature in Section 2 and conclude the paper in Section 6. We

relegate all proofs and additional numeric results to the appendix.

2. Literature Review

Fashion retail has attracted significant attention and contributions from the operations manage-

ment community. For example, Caro and Gallien (2010) collaborate with one of the world’s largest
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fashion retailers, Zara, and show that their proposed network sales optimization model increases

sales by 3-4% based on controlled experiments. Caro and Gallien (2012) also design a pricing pro-

cess that increases Zara’s clearance revenue by 6%. The quick-response nature of fast fashion like

Zara and H&M creates significant value as it can capture the latest trends and minimize production

lead time (Cachon and Swinney 2011, Caro and Mart́ınez-de Albéniz 2015).

Early works in apparel retail operations often ignore demand substitution, typically using single-

product models. However, economics and market science have shown that demand substitution

exists in consumer choice. A range of choice models has been developed to estimate demand sub-

stitution from data (Train 2009) and analyze its impact on operational decisions (Kök and Fisher

2007). Stockouts also influence demand, as customers may consider alternative products when their

desired item is unavailable. Researchers in operations management and marketing science have

proposed methodologies to estimate the impact of stockouts and show that ignoring them may

lead to a biased estimation of product demand (Campo et al. 2000, Musalem et al. 2010, Che

et al. 2012, Deng et al. 2022). Musalem et al. (2010) further propose a price promotion policy that

can mitigate the negative economic impact of stockouts. Our model aligns with this research by

examining stockout-driven size substitution in apparel products.

There is a growing interest in making effective inventory decisions under the stockout events.

The seminal work of Mahajan and Van Ryzin (2001) first shows that the stockout-based inventory

optimization problem, or dynamic inventory problem, is computationally challenging and proves

that the revenue function is not even quasi-concave. Honhon et al. (2010), Honhon and Seshadri

(2013) approximate the dynamic inventory problem with a continuous relaxation, discretize the

time intervals according to the assortment change, and solve the inventory problem using a dynamic

program, assuming that customers follow a ranking-based choice model to make decisions. Goyal

et al. (2016) propose an FPTAS approximation under the assumption that the choice model only

consists of nested rankings. Aouad et al. (2018) proposes an approximation algorithm with ratio

0.139 for the capacitated MNL inventory problem. Lee et al. (2016) discuss the stockout-based

substitution and the inventory problem in the context of textbook retailing. Mart́ınez-de Albéniz

and Kunnumkal (2022) use a Markov chain to approximate the inventory problem under a fixed

replenishment policy. Our work is related to a recent work by Liang et al. (2021), which considers an

MNL-based demand and shows that the optimal inventory policy follows a gain-ordered structure

under the fluid approximation (FA) of the dynamic problem. They prove that the rounded solution

from the FA is asymptotically optimal in the exact problem with a nearly square-root convergence

rate. For the MNL demand, a more recent work by Zhang et al. (2024) further improves the

optimality gap by dropping the dependency on the number of products. Zhang et al. (2024) also

provide an optimality gap for the FA under general substitutive choice models.
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In apparel product demand substitution, most literature only focuses on the substitution between

product styles and views a “product” as the aggregate of all sizes (Boada-Collado and Mart́ınez-de

Albéniz 2020). Such an approach ignores the stockouts induced by the missing sizes and overlooks

the broken assortment effect (Smith and Achabal 1998, Caro and Gallien 2010, 2012). In a different

direction, using a real-world footwear dataset and a difference-in-difference estimation procedure,

Li et al. (2023) empirically show that a significant fraction of customers may consider adjacent

sizes when the best-fit size is out of stock; see the discussion in Section 4.4. That is to say, demand

substitution exists even between sizes. While it is clear that product size plays an essential role in

fashion retailing, to the best of our knowledge, very few works have discussed the validity of the

standard aggregation approach and addressed the difficulties of the operations when stockout-based

size substitution happens. Our work aims to fill this gap in the literature.

3. Model

In this section, we propose a choice model that characterizes consumers’ apparel product choice

based a two-step decision-making process.

3.1. Product, Style, Size, and Customers

We define an apparel product as a style-size pair. In particular, let J be the set of product styles

and K be the set of product sizes. We consider a style-size pair (j, k) as an apparel product,

where j ∈ J and k ∈ K. The style contains all product information, including brand, design, and

color, except its size. Put differently, if one views an SKU as a product, “style” summarizes all

information of the SKU except the size. Notice that product sizes form a complete order, as we

can always sort sizes in K as an increasing sequence. In addition, for a given size k ∈ K, we use

adj+(k) and adj−(k) to denote the larger and small-adjacent sizes of k, respectively. For example,

consider a footwear universe of two styles J = {Nike Air Max White,Nike Air Force White} and

nine sizes K = {6,6.5,7,7.5, . . . ,9.5,10}. Then in this universe, there are |J | × |K|= 18 products.

The adjacent sizes follow immediately, and we have adj+(7) = 7.5 and adj−(7) = 6.5. Note that

each middle size in K can have two adjacent sizes while the two boundary sizes can have only one

adjacent size. To ease notation, we define N ≡ {(j, k) | j ∈ J , k ∈K} as the set of products in the

product universe. We also define (0,0) as the no-purchase option and N+ =N ∪{(0,0)}.

We assume that each customer can be depicted by parameter (s,σ,α), where s ∈ K represents

the customers’ best-fit size in the size set K, σ ∈ {+,−} implies either the larger (+) or the smaller-

adjacent size (-) of s is the customer’s second best-fit size, and α≥ 0 characterizes her sensitivity

toward size deviation. We further focus on the customer type (s,+, α) now, and type (s,−, α) will
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follow as a symmetric case. A customer of type τ = (s,+, α) has random utility uτ
jk toward product

(j, k)∈N :

uτ
jk = vτjk + ϵτjk,

where ϵτjk follows an independent standard Gumbel distribution and the expected utility vτjk is

defined as

vτjk =


vj, if k= s,

vj −α, if k= adj+(s),

−∞, otherwise.

(1)

That is, if a product of style j is of the best-fit size to the customer τ = (s,+, α), it has expected

utility vj; if the product is of the larger-adjacent size, the product is still “acceptable” to the

customer but has a discount α in its utility; if a product is of neither the best-fit size or a larger-

adjacent size, it won’t be considered at all by the customer and has −∞ utility. Following the

convention, the no-purchase option has random utility ϵτ00 and its expected utility is zero.

We remark that the random utility uτ
jk of product (j, k) for customer type τ = (s,−, α) follows

the same argument except that the corresponding expected utility vτjk = vj−α when k= adj−(s). It

implies that to customer (s,−, α), a product of the smaller adjacent size adj−(s) is still acceptable

but has a discount α in its utility.

Finally, we remark that the expected utility defined in Equation (1) indicate that customers will

only consider apparel that is of their best-fit size or of the adjacent size. In other words, cross-size

substitution is restricted to a customer’s best-fit size and its immediate neighbors. This assumption

is consistent with Assumption 1 in Li et al. (2023). In Section 5, we further discuss how our main

results on assortment and inventory planning remain valid even if this assumption is relaxed.

3.2. Consider and Choose Based on In-Stock Size Availability

We assume customers follow a two-step process to make the purchase decision. When facing a

set of available products (an assortment) A ⊆ N , customers first forms a consideration set and

then choose a product from the consideration set or leave without a purchase. The notion of

the consideration set here is quite different from the one in the literature (Aouad et al. 2021,

Jagabathula et al. 2024, Akchen and Mitrofanov 2023). We will come back to make a comparison

in Section 3.5.

Now, let’s consider a customer of type τ = (s,+, α).

Consider. The customer τ forms a consideration set as follows. For a given style j ∈ J , the

customer τ first considers the best-fit product, which is (j, k) for k = s, and checks whether it is
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available. If it is not available, then the customer will consider the same style but of the larger-

adjacent size, i.e., (j, k) for k= adj+(s). More formally, let Cτ (A)⊆A be the consideration set of

customer τ = (s,+, α). Then it is the disjoint union of two sets Cτ (A)≡C1
τ (A)∪C2

τ (A), where

C1
τ (A) = {(j, k)∈A | k= s, j ∈J } (2)

C2
τ (A) = {(j, k)∈A | k= adj+(s), (j, s) /∈A,j ∈J }. (3)

Here C1
τ is the collection of products in assortment A that are of the customer’s best-fit size s, and

C2
τ is the collection of products in A that are of the larger-adjacent size adj+(s) given that the

best-fit size s of the same style is not available. A key observation is that for the same style, an

adjacent size is considered only if the customers’ best-fit size is not available. That is,

the customer will not consider an adjacent size of a style if she can find her best size of that style

in the assortment. We demonstrate the formation of the consideration set Cτ (A) in the following

example.

Example 1. (Consideration Set) Assume that a store provides three styles of shoes, J = {X,Y,Z}.

A customer whose best-fit foot size is 7 visits the store and she might consider the larger-adjacent

size 7.5 as well. In other words, she is of the customer type τ = (7,+, α) for some utility discount

α≥ 0. In the store, some products are out of stock and the set of in-stock products is

A= {(X,6.5), (X,7), (X,7.5), (Y,7.5), (Z,6.0), (Z,6.5)}.

When seeing the assortment S, the customer forms consideration set is Cτ (A) = {(X,7), (Y,7.5)},

since C1
τ (A) = {(X,7)} and C2

τ (A) = {(Y,7.5)}. Note that product (X,7.5) will not be considered

since the best-fit product (X,7) of style X is available. On the other hand, since the best-fit size for

style Y is not available, the customer is willing to consider the larger-adjacent size 7.5, although it

is assigned with a lower utility. The two available products of style Z will not be considered since

they are too small. □

We remark that under this definition of consideration sets, each customer forms a strict pref-

erence hierarchy over apparel sizes as best-fit size ≻ adjacent size ≻ other sizes. As a result, an

adjacent size will only be considered if the best-fit size is not available. This interpretation aligns

with the standard definition of preference ordering (Block and Marschak 1959, Farias et al. 2013,

van Ryzin and Vulcano 2014). The model also allow non-deterministic best-fit size behavior by

mixing customer types (Section 3.3), which captures the scenarios where adjacent sizes may occa-

sionally become the perceived best-fit size due to inherent variability in consumer choice.

Choose. Once the customer forms the consideration set Cτ (A), she selects a product from Cτ (A)

based on an MNL model with the utility defined in Equation (1), or she leaves without a purchase.
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Specifically, the probability of choosing product (j, k) from the assortment A for a customer of

type τ = (s,+, α) is

Pτ ((j, k) |A) =



evj

1+
∑

(j′,k′)∈C1
τ (A) e

vj′ +
∑

(j′,k′)∈C2
τ (A) e

vj′−α , if (j, k)∈C1
τ (A),

evj−α

1+
∑

(j′,k′)∈C1
τ (A) e

vj′ +
∑

(j′,k′)∈C2
τ (A) e

vj′−α , if (j, k)∈C2
τ (A),

0, otherwise,

(4)

with the no-purchase probability Pτ ((0,0) | A) = 1/
(
1+

∑
(j′,k′)∈C1

τ (A) e
vj′ +

∑
(j′,k′)∈C2

τ (A) e
vj′−α

)
.

Finally, we remark that the choice probability Pτ ((j, k) | A) for a customer of type τ = (s,−, α)

follows the same expression as Equation (4) except that the sets C1
τ (A) and C2

τ (A) are redefined

accordingly. Specifically, C2
τ (A) follows as C

2
τ (A) = {(j, k)∈A | k= adj−(s), (j, s) /∈A,j ∈J }.

3.3. The Style-Size Choice Model: The General and Average Cases

Let Γ= {(s,σ,α) | s∈K, σ ∈ {+,−}, α≥ 0} be the collection of all customer types. We further use

µτ to represent the density of customer type τ ∈ Γ in the market. Along with the utility parameters

vj of styles j ∈J , we define a style-size choice model as

[General Model]: P((j, k) |A) =
∑

s∈K,σ∈{+,−}

∫ ∞

0

P(s,σ,α)((j, k) |A) ·µ(s,σ,α)dα, (5)

where the choice probability Pτ ((j, k) |A) is defined as in Equation (4).

In Expression (5), we seek a general representation of customers’ experience on product sizes.

In particular, the distribution µτ for τ = (s,σ,α)∈ Γ allows us to model a wide range of consumer

decisions in the context of apparel product sizes. Let us use customer type (s,+, α) and men’s

footwear industry as an example. The range of shoe sizes is usually {7,7.5,8,8.5, . . . ,12.5,13}. On

the other hand, customers’ actual foot sizes are continuously distributed in the range between,

let’s say, 25 cm (corresponding to size 7) and 30 cm (corresponding to size 13). A customer whose

foot size is exactly 27.5 cm (size 10) might feel uncomfortable when trying size 10.5, which can be

too loose. In that case, the corresponding α is bigger. On the contrary, consider a customer whose

best-fit size is 10 and actual foot size is slightly longer than 27.5 cm. When size 10 is out of stock, he

is more flexible in choosing the adjacent size, 10.5. In that case, the corresponding utility discount

α is smaller. The distribution of customer types over α reflects the fact that the standardized retail

sizes are an approximation to each person’s real foot size (or body size for clothes).

Later in Section 4, when we estimate the size substitution effect from a real-world dataset that

involves the inventory information for nearly five hundreds apparel products over an eight-month

horizon, we consider an average case of the style-size choice model (5). In this average model, we aim
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to obtain a more succinct and interpretable representation of the general model (5). Specifically,

we first use one parameter to represent the discomfort discount α= α0 of all customers, which will

be estimated from the dataset. This also helps us interpret the average cross-size demand spillover

in this dataset and compare it with the empirical results by Li et al. (2023). Second, we assume

that for each best-fit size s∈K, customers are equal likely to be oversized (thus might consider the

larger-adjacent size) or undersized (thus might consider the smaller-adjacent size) compared to s.

That is, we assume µ(s,+,α0) = µ(s,−,α0). With these reductions, we obtain a more compact style-size

choice model.

[Average Model]: P((j, k) |A;α0) =
∑
s∈K

µ̄s ·
(
1

2
·P(s,+,α0)((j, k) |A)+

1

2
·P(s−,α0)((j, k) |A)

)
, (6)

where, with slight abuse of notation, we write µ̄s ≡ µ(s,+,α0) + µ(s,−,α0). In this average model,

the parameter µ̄s represents the fraction of customers whose best-fit size is s. We remark that

the average model (6) can be fully characterized by parameters α0 and (vj, µ̄s)j∈J ,s∈K, leading

to a total number of |J | + |K| + 1 parameters. This tight representation allows us to compare

the performance of the style-size choice model with other benchmark approaches, which involve

numbers of parameters of a similar scale; see Section 4.3.

3.4. Model Extension: Size Variation across Styles

Due to the diverse combinations of apparel styles, sizes, and customers’ actual body measurements,

it’s unlikely that all consumer choices in apparel retail can be fully captured by the general style-

size model (5). For instance, a baggy fit T-shirt is intentionally designed to be looser. A customer

who normally wears size L in other styles might find that size M offers the best fit in this case.

When size definitions for a particular style do not align with others, we can relabel sizes within

K for that style to maintain consistency. These adjustments can be easily implemented during

inventory management.

In more extreme cases where substantial size variation exists across apparel styles, we might

define each customer type as a tuple (s,σ,α) = (sj, σj, αj)j∈J , where for each style j ∈J , size sj ∈K

is the customer’s best-fit size, σj ∈ {+,−} indicates which an adjacent size would be considered, and

αj represents the utility discount associated with choosing that adjacent size. The customer type

(s,σ,α) defined in Section 3.1 is a special case of this tuple, where sj, σj, and αj are fixed across

all styles j ∈ J . While we will not address this extension in depth due to the added notational

complexity, we will later show in Section 5 that our main results on assortment and inventory

planning – Theorem 1 and Proposition 1 – still apply under this extended model.
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3.5. Comparison to Other Choice Models in the Literature

Now we compare the style-size choice model in Expression (5) with other existing choice models in

the literature. At first glance, the style-size choice model resembles the mixed-MNL model (Train

2009), which assumes that there are several customer types in the market and each customer

type makes decisions according to a distinct MNL model. The style-size choice model also allows

customer heterogeneity in Expression (5), but it differentiates itself from the mixed-MNL model

by incorporating the notion of consideration set in the decision-making process. This consideration

set structure allows us to model the strict hierarchy between sizes given that there exists the most

suitable size, the adjacent size, and the unacceptable sizes for each customer. In contrast, in the

mixed-MNL model, it is not possible to construct a hierarchy between sizes as long as each has

non-zero choice probability, and a customer may still buy a much larger or a much smaller size of

a given style even if the best-fit size is offered.

The style-size choice model contributes to the growing literature of the consideration set-based

choice models. In particular, Aouad et al. (2021) and Jagabathula et al. (2024) consider a consider-

then-choose (CTC) model, which is defined as a distribution over the product space of subsets

and rankings. In the CTC model, a customer type is characterized by a subset-ranking pair (C,σ).

When an assortment A is offered, a customer of type (C,σ) will choose argmini∈C∩A [σ(i)], i.e.,

choose the product with the highest rank in the intersection of the consideration set C and the

offered assortment A. Our style-size choice model differs from the CTC model in several aspects.

First, in the “choose” step, our model follows an MNL model while the CTC model follows a

ranking preference. Second, the consideration set in the style-size choice model is stock-based, i.e.,

a function of stock, while the consideration set in the CTC model is independent of the set of

available products. In the following example, we show that the consideration set Cτ (A) defined in

Section 3.2 cannot be represented by the CTC model as an intersection of assortment A and a

fixed subset C of products.

Example 2. (Stock-based Consideration Set) Consider a universe of one style J = {X} and two

sizes K= {7,7.5}, where the two sizes are adjacent to each other. We also consider a customer of

type τ = (7,+, α). For A1 = {(X,7), (X,7.5)}, we have Cτ (A1) = {(X,7)}; for A2 = {(X,7)}, we have

Cτ (A2) = {(X,7)}; for A3 = {(X,7.5)}, we have Cτ (A3) = {(X,7.5)}. Assume that Cτ (A) can be

presented as C∩A for a subset C ⊆N . By Cτ (A2) = {(X,7)}, we know that (X,7)∈C. By Cτ (A3) =

{(X,7.5)}, we know that (X,7.5) ∈ C. However, this implies that C ∩ A1 = {(X,7), (X,7.5)} ≠

Cτ (A1), a contradiction. □

The style-size choice model is analogous to a context-dependent (i.e., assortment-dependent)

choice (Tversky and Simonson 1993) in which customers make decision based on the context of
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products and their comparisons to each other in the offered assortment. In the style-size choice

model, a customer sees the set of available products and decides not to consider the adjacent sizes

if the best-fit size of the same style is available in the assortment. One can also view the style-size

choice model as cue-triggered consumer behavior (Pennesi 2021) in which consumers’ decisions are

driven by a stimulus from the environment. In the style-size choice model, the unavailability of the

best-fit size in the assortment triggers customers to consider the adjacent sizes of the same style.

Finally, while the style-size choice model is analogous to the context-dependent choice models,

it still satisfies the substitutability property (or also called the stochastic rationalizability property;

see Jagabathula and Rusmevichientong (2019), Chen and Mǐsić (2022), Zhang et al. (2024)). The

property is a widely used axiom in the economics and decision theory literature (Rieskamp et al.

2006). It is satisfied by several popular choice models, including the mixed-MNL and ranking-based

models, and defined as follows.

Definition 1. A choice model P over choices in N+ satisfies the substitutability property if P(m |

A∪{n})≤ P(m |A) for all assortments A and choices m and n such that n∈N\A.

The property implies that the probability of choosing any product will not increase if we enlarge an

assortment. The substitutability property is refereed as the least restricted form of rational choice

and thus sometimes dubbed as “weak rationality.” However, it can still be violated if a choice model

involves context-dependent or assortment-dependent phenomena. One example is the decoy effect,

a marketing phenomenon where adding an inferior “decoy” product to an assortment increases the

appeal of a superior “target” product, making consumers more likely to choose it (Huber et al.

1982). When a choice model violates the substitutability property, it usually leads computationally

expensive methodologies for the downstream applications (Akchen and Mǐsić 2021). Although the

style-size choice model can be considered context-dependent due to the size-triggered consideration

set, it still satisfies the substitutability property as long as the utility discount is nonnegative. We

have the following lemma.

Lemma 1. The choice probability P(s,σ,α) satisfies the substitutability property if and only if α≥ 0.

We relegate the proof to Appendix B.1. Later in Section 5.4, we will see that Lemma 1 leads to an

intuitive inventory policy that is asymptotically optimal.

4. The Dataset and The Estimation Outcomes

In this section, we apply our model to real-world inventory and sales data and estimate how

customers may consider adjacent sizes when stockouts happen.
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Mean Median Std. Dev. Min Max

Visitors 3,857.5 3,981.5 593.6 2,865.6 4,880.7
Units stocked 453.8 449.1 115.8 234.7 604.4
Products available 271.2 284.9 63.5 143.0 359.2
Units sold 30.8 30.5 18.5 6.5 77.3
Sizes offered 6.4 6.4 1.5 3.9 8.4

Table 1 Weekly summary statistics (averaged across stores)

4.1. Data

We obtained the dataset from a large footwear retailer. The company operates hundreds of stores

and also owns an e-commerce website. We focus on the data collected from brick-and-mortar

stores. Notice that the style-size combination is the most disaggregate product level observed in

the dataset. We again follow Section 3 to define such style-size combination as a product or SKU.

The data spans 33 weeks in the 2019-2020 season, starting on July 28, 2019, and is for 51 styles

of woman casual booties, which is a midsize category among 50+ categories overall. There are

nine shoe sizes ranging from size 6 to size 10 with half sizes in between. The dataset includes the

following information from each store m∈M and week t∈ T :

Nmt: the number of visitors to store m during week t. The data were collected by the traffic

counter at the entrance of each store. On average, there were around four thousand visitors to each

store in each week.

Qmt
(j,k): the number of sold units of product (j, k) at store m during week t. On average, 30.8 units

were sold at a given store in a week. Hence, roughly 99% of the customers either bought a product

outside N or did not make a purchase.

Imt
(j,k): the number of stocked units of product (j, k) for store m and week t. We remark that

we also know the replenished units. We find that the values of the stocked units, the units sold,

and replenished units are quite consistent, and it shows that the inventory records are reliable. On

average, a store stocked 453.8 units during a week.

Amt: the set of available products for store m and week t. Recall that Amt is defined as Amt =

{(j, k) ∈N | Imt
(j,k) ≥ 1}. For simplicity, we assume that Amt is the same throughout the week, i.e.,

each customer who visited the store during the week saw the same set of available products. This

is a reasonable assumption, as we observe that only a small fraction of products were sold in a

week and thus the set of available products Amt would not change significantly during the same

week. On average, there were 271.2 products available, out of a total of 459 (= 51× 9). For the

styles offered, on average there were 6.4 sizes in stock (out of 9).

We summarize the aforementioned information in Table 1. Specifically, we report the weekly

visitors Nmt, units stocked
∑

(j,k)∈N Imt
(j,k), products available |Amt|, units sold

∑
(j,k)∈N Qmt

(j,k), and
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Figure 1 Evolution of visitors, units stocked, products available, units sold, and sizes offered from 2019 Fall to

2020 Spring averaged across stores

sizes offered, all averaged across stores m∈M.1 We also show the evolution of these quantities in

Figure 1. From the figure in can be seen that the number of visitors decreased slowly in the period

considered. Similarly, the number of sizes offered decreased almost monotonically from 8.4 sizes

(out of 9) to 3.9. In contrast, the stocked units and the number of available products peaked in

mid-October 2019, and the number of sold units peaked in November 2019, a few weeks behind

the peak of the stocked units and right before the holiday season.

4.2. Estimation Method: The EM Algorithm

We propose an estimation method for the average style-size choice model (6) based on the

expectation-maximization (EM) algorithm. Given space constraints, we defer the technical details

to Appendix A and present a high-level summary below.

The EM algorithm is a widely used framework for maximum likelihood estimation in models

with latent variables. It alternates between two steps: an expectation (E) step, where the expected

values of the missing or unobserved variables are computed given the observed data and current

parameter estimates, and a maximization (M) step, where these expectations are used to optimize

the model parameters. In our setting, customer types τ are unobserved in data, making them

natural latent variables for an EM approach. In the E step, we compute the conditional expectation

of customer-type assignments using Bayes’ rule, based on the current model parameters and the

observed sales data (Nmt,{Qmt
(j,k)}(j,k)∈Amt)m∈M,t∈T . In the M step, we maximize the expected

complete-data log-likelihood with respect to model parameters. This step further decomposes into

two independent optimization problems under the style-size choice model: one for estimating the

distribution over customer types, which has a closed-form solution, and the other for estimating

style utilities and size sensitivity, which involves a concave maximization problem that can be

1 The sizes offered equals the ratio between |Amt| and the number of styles in the assortment.
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solved efficiently. In Appendix A, we derive the complete-data log-likelihood based on the style-size

choice model (Section A.1) and then develop the E and M steps in detail (Section A.2).

The EM algorithm has been used for estimating choice models from data. Examples include the

estimation of the LC-MNL model (Train 2009), the general attraction model (Gallego et al. 2015),

and the ranking-based model (van Ryzin and Vulcano 2014). Our EM approach provides both

flexibility and computational efficiency while allowing for the incorporation of seasonality effects.

By introducing time-fixed effects in the utility function, it accounts for variations in consumer

preferences across different sales periods. This is particularly important given that our dataset

spans thirty-three weeks, as illustrated in Figure 1. In Appendix A.3, we further highlight the

advantages of our EM algorithm by comparing its simplicity and scalability to the estimation

procedures of other choice models.

4.3. Estimation Outcomes

We present our estimation outcomes in Table 2, which compares the performance of four models,

the size aggregation model, the nested logit model, the granular model, and the style-size model,

under three metrics. The style-size model is the proposed model in this paper. As discussed at the

beginning of Section 3.3, due to the large size of the dataset, we consider estimating the average

style-size choice model (6).

The first benchmark, the size aggregation model (Size-Agg), refers to the traditional approach

described in the introduction (Section 1). Specifically, in this approach, one aggregates all sizes (all

SKUs) under the same style to create a “product” and only considers it out of stock if all sizes are

not available. Following this approach, we estimate the utility vaggj of each style by first creating

the aggregated products from the data and then estimating
(
vaggj

)
j∈J via maximum likelihood

estimation. The choice probability for an apparel product (j, k) in the assortment A under the size

aggregation model is simply P((j, k) |A)) = exp(vaggj )/
(
1+

∑
j′|∃(j′,k′)∈A exp(vaggj′ )

)
· µ̂k, where µ̂k is

the fraction of sales of size k. In other words, under the size aggregation model, we assume that

the demand of (j, k) is simply the demand of the style j times the fraction of demand of size k.

The second benchmark is the nested logit model (Train 2009), which has a natural structure that

incorporates the apparel styles and sizes. Specifically, we consider a two-level nested logit model,

where the first and second levels encode the apparel sizes and styles, respectively. For simplicity,

we only present one variant of the nested logit model. Another variant, in which styles are encoded

first, is discussed in Appendix C, with Figure 4 illustrating both variants. In the same section, we

discuss how the style-size choice model proposed in this paper differ from these two variants of the

nested logit model. Note that the two variants have similar performance in terms of out-of-sample

prediction in our numeric setting.
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Model Size-Agg Nested Logit Style-Size Granular

Number of Parameters 60 61 61 459
Size Sensitivity (α0) - - 1.39*** -
KL Divergence (10−2) 1.88 1.72 1.66 1.67
Mean Absolute Error (10−3) 2.64 2.55 2.50 2.54
KL on No-Purchase (10−4) 8.25 6.97 6.87 6.96

*** Significant at the 0.1% level

Table 2 Estimation Results for the footwear products in the dataset

Lastly, we refer to the granular model as the MNL model at the most disaggregate level. In

particular, the model assumes each product (j, k) has expected utility vjk and customers make

purchase decisions according to the MNL model P((j, k) | S) = exp(vjk)/(1+
∑

(j,k)∈S exp(vjk)). We

call it the granular model because it assigns model parameters at the most disaggregate/granular

level, i.e., assigns a parameter to each style-size pair. Notice that the granular model has |J ||K|=

459 parameters, while the style-size model with average size sensitivity parameter considered in this

section only has |J |+ |K|+1= 61 parameters. Similarly, the nested logit model has |J |+ |K|+1=

61 parameters while the size aggregation model has |J |+ |K|= 60. Therefore, among all the models

we consider in this numerical study, the granular model has the largest number of parameters. If

the problem instance grows bigger, the granular model can be more disadvantage for practitioners

for the purpose of interpreting consumer choice and designing business strategies.

In a sense, the granular model is neither practical nor compact, as it assumes that customers

may substitute shoes of a very large size for shoes of a small size. To this end, we view the granular

model as the benchmark that captures the consumer choice at the most disaggregate level. While

other stronger choice models exist, such as the LC-MNL model, the number of parameters in

those models would further increase and make the comparison with the style-size choice model less

informative. For example, a ten-class LC-MNL model would have 4590 parameters in contrast to

61 in the style-size choice model with average size sensitivity. When the model complexities differ

up to eighty times, one can expect that the more complex model can fit the data better while

being intractable and harder to implement in practice and with the risk of overfitting. In fact, in

our experience, it is computationally intractable to estimate the LC-MNL model for the current

dataset.

We present the estimation outcome of each model in Table 2. The first row presents the number of

parameters in each model. The second row reports the estimated average size sensitivity parameter

is α0 = 1.39. The estimation outcome also passes the likelihood ratio test with very small p-value

against the style-size choice model of zero size substitution effect. We will come back to provide

insights on this value of size sensitivity parameter and connect it to the spillover effect reported

by Li et al. (2023).
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The third to last row report the predictive performance of each model, under three different

metrics. Specifically, here we consider the out-of-sample performance. For simplicity, in each trial of

experiment, we uniformly at random assign each store to be either in the training group Mtrain or

in the testing group Mtest. We then use sales data from the stores in the training group Mtrain to

learn the choice models, and examine the performance of each model based on the sales data from

the testing group Mtest. We run the experiment forty times and report the average performance.

We use three different metrics to measure the performance of each model. The first two metrics, the

KL divergence and the Mean Absolute Error (MAE), are the standard metrics used in the literature.

We define them as follows. Let p̃mt
(j,k) = P((j, k) |Amt) and p̂mt

(j,k) =Qmt
(j,k)/N

mt be the predicted and

empirical choice probability of product (j, k) in week t at store m. We write A+ ≡ A ∪ {0,0} for

any assortment A. The KL divergence is defined as

KL=−
( ∑

m∈Mtest

∑
t∈T

Nmt
∑

(j,k)∈Amt
+

p̂mt
(j,k) · log

(
p̃mt
(j,k)/p̂

mt
(j,k)

))/( ∑
m∈Mtest

∑
t∈T

Nmt

)
. (7)

We further let Q̃mt
(j,k) be the predicted sales of product (j, k) in week t at store m. Then the MAE

is defined and rewritten as

MAE=

∑
m∈Mtest

∑
t∈T
∑

(j,k)∈Amt
+

∣∣Q̃mt
(j,k) −Qmt

(j,k)

∣∣∑
m∈Mtest

∑
t∈T Nmt

=

∑
m∈Mtest

∑
t∈T Nmt

∑
(j,k)∈Amt

+

∣∣p̃mt
(j,k) − p̂mt

(j,k)

∣∣∑
m∈Mtest

∑
t∈T Nmt

For both metrics, a smaller value implies better predictive performance.

Table 2 shows that the performance of the size aggregation model is significantly worse than

that of other models. In particular, since the model overlooks the broken assortment effect caused

by the size stockouts, it underestimates the style utility - when a customer couldn’t find her best

size of a style, the model would misinterpret that as the style is not “attractive” enough and thus

undervalue it. This numerical finding highlights the peril of aggregating sizes in demand estimation,

especially in a setting shown in Table 1 where sizes are not always complete.

According to Table 5, among the three remaining models, the proposed style-size model has the

best performance. Notably, it outperforms the nested logit model, which has the same number of

parameters, in both metrics. When compared to the granular model, which has nearly eight times

more parameters, the style-size model demonstrates a clear advantage in predictive performance

measured by the MAE score. In terms of KL divergence, the style-size and granular models perform

comparably. This is surprising, as we initially expected the granular model to perform better due

to its higher number of parameters. To further investigate this result, we define a third metric “KL

on No-Purchase” as

−

( ∑
m∈Mtest

∑
t∈T

Nmt

(
p̂mt
(0,0) · log

(
p̃mt
(0,0)

p̂mt
(0,0)

)
+(1− p̂mt

(0,0)) · log

(
1− p̃mt

(0,0)

1− p̂mt
(0,0)

)))/( ∑
m∈Mtest

∑
t∈T

Nmt

)
,
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which measures how accurately a choice model can predict whether a customer would make

a purchase or not. Particularly, the “KL on No-purchase” measures the information loss over

purchase/no-purchase decisions, p̂mt
(0,0) · log

(
p̃mt
(0,0)/p̂

mt
(0,0)

)
+(1− p̂mt

(0,0)) · log
(
(1− p̃mt

(0,0))/(1− p̂mt
(0,0))

)
,

instead of that over all purchase decisions (including no-purchase option) in Amt
+ , i.e.,∑

(j,k)∈Amt
+

p̂mt
(j,k) · log

(
p̃mt
(j,k)/p̂

mt
(j,k)

)
, compared to Equation (7).

In Table 5, we observe that the style-size model predicts more accurately than both the nested

logit and granular models on whether customers make purchases. Additionally, while the granular

model significantly outperforms the nested logit model in terms of KL divergence for all purchase

decisions, this outperformance is not observed in the KL divergence for purchase/no-purchase

decisions. This suggests that the additional parameters in the granular model improve its fit for

consumer choices when purchases are made but do not effectively capture when and whether cus-

tomers choose not to purchase. We attribute this to model misspecification. In both the granular

and nested logit models, customers may substitute shoes of very distant sizes, leading to an under-

estimation of the no-purchase probability. In contrast, the style-size model assumes that customers

only substitute adjacent sizes, resulting in a more accurate prediction of the no-purchase option.

We also remark that one can possibly design an even more advanced version of the style-size

choice model, by allowing each apparel product (j, k) to have its utility parameter v(j,k), along

with the structure of the consideration sets and customer types. We expect such model would

possibly further improve the predictive accuracy, as it has the best of both worlds - the additional

parameters can help to predict the apparel product demand better if the customer eventually make

purchases, as in the granular model, while the structure of the consideration sets leads to a more

reasonable way to model how customers faces size stockouts, as in the vanilla style-size choice

model. However, we do not pursue such approach in this paper, as we do not intend to propose

a new model that surpasses all choice models in the literature in terms of prediction accuracy.

Instead, we propose a parsimonious model to study the demand substitution under the synergy of

apparel styles and sizes and provide operational insights, as we will soon see in Section 5.

Lastly, Figure 2 presents the uncensored distribution µ̄k ≡ µ(k,+,α0)+µ(k,−,α0) of customers’ best-

fit sizes (blue bars) in the estimated style-size choice model, and compares it with the censored dis-

tribution (yellow bars), which is the fraction of units sold in each size µ̂k ∝
∑

mtj Q
mt
(j,k). We observe

that the distribution µ̄k is smoother than the fraction of sales µ̂k. Indeed, the censored distribution

µ̂k overestimates the probability mass of the “major” sizes in the middle, i.e., k ∈ {7.5,8,8.5}, at

the expense of the less popular “minor” sizes at the extremes – namely, k ∈ {6,6.5,9.5,10}. The

stocking decisions censor the demand of the minor sizes, but it is reestablished by the EM algo-

rithm. We also observe that both µ̄k and µ̂k are not unimodal over k. For example, µ̄6.5 and µ̄9.5

are slightly smaller than µ̄6 and µ̄10, respectively. This is a truncation effect since sizes 6 and 10
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Figure 2 The uncensored best-fit distribution µ̄k and the observed fraction of sales µ̂k.

receive spillover demand from consumers that have a shoe size slightly smaller than 6 or slightly

larger than 10, repectively.

4.4. Discussion

In Table 2, we show that the estimated size sensitivity parameter is α0 = 1.39. In this section, we

will further relate it to the spillover effect of unmet demand over the adjacent sizes reported by

Li et al. (2023). Consider the style-size choice model we estimated from the dataset in Section 4.3

with average size sensitivity parameter α0 and fix a style j ∈ J . Assume a customer of type τ =

(k,+, α0) visits a store. Let us define two assortments A1 and A2, where A1 =A0 ∪{(j, k) | k ∈K},

A2 = A1\(j, k), and A0 is any assortment composed of products of styles other than j. We can

interpret A2 as the scenario where the best-fit size k of style j is out of stock. In the first assortment

A1, the choice probability of product (j, k) is

Pτ ((j, k) |A1) =
evj

1+ evj +
∑

(j′,k′)∈C1
τ (A0)

evj′ +
∑

(j′,k′)∈C2
τ (A0)

evj′−α0

and the choice probability of (j, k′) is simply zero for k′ = adj+(k). In the second assortment

A2, the choice probability of (j, k) is zero, as it is out of stock, and the choice probability of the

adjacent-larger size (j, k′) for k′ = adj+(k) is

Pτ ((j, k
′) |A2) =

evj−α0

1+ evj−α0 +
∑

(j′,k′)∈C1
τ (A0)

evj′ +
∑

(j′,k′)∈C2
τ (A0)

evj′−α0
.

It follows that:

Pτ ((j, k
′) |A2)

Pτ ((j, k) |A1)
≥ exp(−α0) = 24.9%. (8)
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The inequality in Equation (8) holds for any style j, any best-fit size k, and any customer type

τ = (k,σ,α0) for σ ∈ {+.−}. Therefore, it implies that with probability at least 24.9% that a

customer will switch to an adjacent size of the same style when the best-fit size is out of stock. If

we adopt the classic interpretation of choice probability as the demand rate, Equation (8) suggests

that, on average, at least 24.9% of the unmet demand for an apparel product due to stockouts may

substitute to the adjacent sizes of the same style2. By the symmetry in the average style-size choice

model, this substitution is evenly split: approximately 12.5% spills over to the larger adjacent size,

while the remaining 12.5% shifts to the smaller adjacent size.

Finally, we remark that the paper by Li et al. (2023) investigates similar consumer behavior in

size substitution under stockouts. The authors work with one of China’s largest sportswear fashion

retailers and develop a difference-in-differences (DID) framework to estimate the stockout-based

spillover effect on men’s sports footwear over a two-year period. They show that, when adjacent

sizes are always in stock, 25.1% and 26.6% of the unmet demand of an out-of-stock SKU spill

to the adjacent-larger and the adjacent-smaller sizes, respectively. They term this the theoretical

cross-size demand spillover. The authors also consider the actual cross-size spillover, in which they

take into account the availability of adjacent sizes when each stockout happened (Section 6.3 of Li

et al. (2023)), and show that 16.7% and 11.9% of the unmet demand of an out-of-stock SKU spill

to the adjacent-larger and the adjacent-smaller sizes, respectively.

It is remarkable that the findings in Li et al. (2023), especially the actual cross-size demand

spillover, are quite comparable to ours in the sense that both papers report an appreciable amount

of unmet demand spilling to adjacent sizes due to stockouts, although the empirical approaches

differ (DID vs. choice modeling), and the product categories are different (men’s sports shoes vs.

women casual booties). In addition, with the proposed prescriptive approach, we will be able to

discuss how the size substitution effect may impact the operational decisions on assortment and

inventory planning.

5. Assortment and Inventory Optimization

In this section, we investigate how the size substitution effect may impact the operational deci-

sions in assortment and inventory optimization problems. All proofs are relegated to Appendix

(Section B).

5.1. Assortment Optimization

We first consider the assortment optimization problem under the proposed style-size choice model.

We assume that each product (j, k)∈N has an unit revenue rj, i.e., the unit revenue is independent

2 The ratio in Equation (8) is less than e−α0 ·maxj

{
(1+ evj )/(1+ evj−α0)

}
, which in our dataset is 24.92%.
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of product size. This is a reasonable assumption, as stores usually do not charge different prices

for products of the same style. Without loss of generality, we write that J ≡ {1,2, . . . , J}, and

r1 ≥ r2 ≥ . . .≥ rJ ≥ 0. Then the assortment optimization problem is defined as

maximize
A⊆N

{
R(A)≡

∑
(j,k)∈A

rj ·P((j, k) |A) =
∑

s∈K,σ∈{+,−}

∫ ∞

0

µ(s,σ,α) ·R(s,σ,α)(A)dα

}
, (9)

where R(A) is the expected revenue of assortment A and Rτ (A)≡
∑

(j,k)∈A rj ·Pτ ((j, k) |A) is the

expected revenue collected from customer type τ = (s,σ,α), with Pτ defined in Equation (4). We

further write wj ≡ evj as the attraction parameter of style j and thus Rτ (A) follows

Rτ (A) =

∑
(j,k)∈C1

τ (A) rjwj +
∑

(j,k)∈C2
τ (A) e

−αrjwj

1+
∑

(j,k)∈C1
τ (A)wj +

∑
(j,k)∈C2

τ (A) e
−αwj

.

Recall that in Section 4, we showed that size substitution happens. Remarkably, in the following

theorem, we show that the size substitution effect does not have an impact on the assortment

decision. Additionally, the optimal decision of Problem (9) has a revenue-ordered structure in

product styles.

Theorem 1. Let {1,2, . . . , j∗} be the optimal assortment under the style-only MNL choice model:

{1,2, . . . , j∗}= argmax
Astyle⊆J

{ ∑
j∈Astyle

rjwj

1+
∑

j∈Astyle
wj

}
. (10)

Then there exists an optimal solution A∗ ⊆N to the assortment problem (9) that takes the form

A∗ = {(1, k), (2, k), . . . , (j∗, k) | k ∈K}. (11)

That is, for style j ∈ {1, . . . , j∗}, it is optimal to offer all sizes. For other styles, do not offer any

size at all.

Theorem 1 reveals a simplification in assortment planning under the style-size choice model.

Although demand substitution can occur both across apparel styles and sizes, which are inher-

ently “two-dimensional,” the optimal assortment follows a one-dimensional structure. Specifically,

product sizes and size-substitution effects can be ignored, and the optimal decision can be made

solely at the style level, mirroring the classic MNL assortment optimization problem (Talluri and

Van Ryzin 2004) in Problem (10) and rendering the revenue-ordered structure of Equation (11).

Moreover, a priori, an apparel retailer may consider skipping some sizes for less popular styles.

That approach would contravene Theorem 1, which states that if it is optimal to include a style in

the assortment, then all sizes should be included, regardless of the style’s popularity.

Theorem 1 also provides theoretical justification for size aggregation in assortment optimization,

a common approach in the operations management literature (Boada-Collado and Mart́ınez-de
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Albéniz 2020). Notably, the optimal assortment (11) remains unchanged regardless of the distri-

bution µτ over customer types τ = (s,σ,α). In other words, the optimal assortment decision is

independent of whether customers are more flexible with size variations (µ(s,σ,α) concentrated at a

low α) or more sensitive to them (µ(s,σ,α) concentrated at a high α). Moreover, this result aligns

with industry practices, where retailers typically focus on style selection rather than size differen-

tiation when designing catalogs or arranging store displays. Later, we show that Theorem 1 also

leads to an asymptotically optimal inventory policy that remains invariant to size substitution

effects.

We utilize the following three facts in the proof of Theorem 1: (i) The unit revenue or net profit

of a product only depends on its style, not its size. (ii) The utility of a product only depends on its

style and not on its size, as long as the product is of the correct size. (iii) A product has a lower

utility to customers if it is of an adjacent size. Note that the second fact also relates to the formation

of the consideration sets (Section 3.2). As long as we design the offered assortment to satisfy

every customer’s first-best choice (here, the best-fit size), customers would behave according to a

standard MNL at the style level. Hence, Theorem 1 actually holds for a more general setting of the

style-size choice model. First, the theorem applies to the model extension described in Section 3.4,

as the assortment A∗ defined Equation (11) remains optimal for each possible generalized customer

type (s,σ,α) by satisfying their best-fit size under each offered style. Second, the theorem also

applies to the case that there might exist the third or fourth best-fit size for a customer; see the

discussion in the last paragraph of Section 3.1. Given that the first-best choice under each offered

style is satisfied by A∗, the second, the third, and the fourth choices do not matter. The above

two examples highlight the key strength of Theorem 1 – despite variations in customer demand

patterns due to the combinatorial nature of style-size pairs in apparel products, the assortment

decision can still be intuitively made.

Finally, Theorem 1 also contributes to the assortment optimization literature. Recall that the

style-size choice model resembles the mixed-MNL model, as it is a mixture of consider-then-choose

models for many customer types in which the choice step follows an MNL. It is well-known that

the optimal assortment of the mixed-MNL model in general does not have the revenue-ordered

structure, and finding the optimal assortment is NP-hard (Bront et al. 2009, Rusmevichientong

et al. 2014). On the other hand, the optimal assortment of the MNL model does have a revenue-

ordered structure (Talluri and Van Ryzin 2004). Thus, we can view the style-size model as an

interesting middle point between the MNL and mixed-MNL models.

5.2. Inventory Optimization

We further consider a stockout-based inventory optimization problem under the proposed style-

size choice model. For convention, we write N≡ {1,2, . . .} as the set of positive integers and N+ ≡
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N ∪ {0}. We specify the inventory model as follows. Let ℓ = 1,2, . . . be a sequence of customers.

Each customer visits the store at time tℓ and makes a purchase decision Dℓ ∈N+. We make two

assumptions about the customers. First, we assume that the arrival time of customers (tℓ)ℓ∈N+

follow a homogeneous Poisson process of rate λ> 0. For simplicity, we ignore seasonality. Second,

we assume that customers’ decisions Dℓ follow the distribution Dℓ ∼ P(· |Aℓ), where Aℓ is the set

of available products when customer ℓ visits and P(· | ·) is the proposed style-size choice model (5).

Let Iℓjk ∈ N+ be the remaining stock of product (j, k) ∈N at time tℓ, i.e., at the time that ℓth

customer visits. Then the set of available products is thus defined as Aℓ = {(j, k) ∈ N | Iℓj,k > 0}.

The stock Iℓ =
(
Iℓjk
)
(j,k)∈N follows the recursive equation: Iℓ+1

jk = Iℓjk − 1 if Dℓ = (j, k) ∈ Aℓ; and

Iℓ+1
jk = Iℓjk otherwise. That is, if a customer chooses to buy a product of style j and size k, then the

corresponding stock level decreases by one. Notice that Iℓ+1 ≥ 0 for all ℓ∈N+, as P((j, k) |Aℓ) = 0

whenever Iℓjk = 0.

The store will make an inventory decision I∈N|N |
+ (non-negative integers) for the initial inventory

depth, i.e., deciding I = I1. Associated with the decision, the store pays unit procurement cost

cj to order each unit of product (j, k) and charges unit price pj for each sale of (j, k), which are

assumed to be independent of the size k. We also write p0 = 0 and c0 = 0 for the no-purchase

option. The goal of the store is to maximize the expected profit up to a given time T . That is, the

store maximizes

Pinv := maximize
I∈NJK

+

[
Π(I) :=E

[ ∞∑
ℓ=1

pDℓ · I [tℓ ≤ T ]

]
−
∑

(j,k)∈N

cjIjk

]
. (12)

The objective function Π(I), which is the expected profit, consists of two terms, the expected

revenue and the total cost. Notice that the revenue
∑∞

ℓ=1 pDℓ · I [tℓ ≤ T ] is a random variable,

as both customer arrival times and customers’ decisions are random. We can also rewrite the

expected revenue as follows. Let L be the number of customers that arrive during [0, T ]. Then L

is a Poisson random variable with parameter Tλ and thus E
[∑∞

ℓ=1 pDℓ · I [tℓ ≤ T ]
]
=E

[∑L

ℓ=1 pDℓ

]
.

We use I∗ and Π∗
inv to denote the optimal solution and the optimal objective value of the inventory

problem Pinv, respectively. Without loss of generality, in this section, we write J ≡ {1,2, . . . , J}

and K≡ {1,2, . . . ,K}, where two sizes k and k′ are adjacent if |k− k′|= 1. We also label product

styles in a way that r1 ≡ p1 − c1 ≥ r2 ≡ p2 − c2 ≥ . . . ≥ rJ ≡ pJ − cJ ≥ 0, i.e., styles are ordered

in a decreasing order of their unit profits. Throughout the section, we write wj ≡ exp(vj) as the

attraction parameter for style j ∈J .

Before presenting our approach to solve Problem (12), we pause to comment on the computa-

tional and theoretical challenges behind it. Notice that the stockout-based inventory optimization

problem like Problem (12) is notoriously hard (Mahajan and Van Ryzin 2001). In fact, as Aouad



Akchen and Caro: On Size Substitution and Its Role in Assortment and Inventory Planning
23

et al. (2018) point out, given an initial inventory vector, even the efficient evaluation of the expected

revenue E
[∑L

ℓ=1 pDℓ

]
is an open question for most choice models of interest, including the stan-

dard MNL model, due to the existence of stockout-based substitution. That is, customers may

substitute another product in Aℓ for their most desired product when it is out of stock, and the

substitution follows the choice model P(· |Aℓ). In addition, the set of available products Aℓ varies

according to each product’s in-stock availability. That is why Problem (12) is also referred as the

dynamic inventory problem with stockout-based substitution. In contrast, demand substitution in

Problem (9) is assortment-based, or static, because it assumes that demand is completely deter-

mined by the products offered in the assortment regardless of whether they are in stock at any

particular point in time. Recall that a product is a style-size pair. However, Theorem 1 shows that

assortment planning can be done at the style level under assortment-based substitution.

To illustrate the previous point, consider the revenue collected under two scenarios: (i) customers

do not consider adjacent sizes; and (ii) customers do consider adjacent sizes when the best-fit size

is not available. We show that ignoring the size substitution effect underestimates a product’s

expected revenue.

Example 3. (Size Substitution Effect in a Stockout-based Setting) Consider a market of one style

of a T-shirt J = {1} and two sizes K= {Medium (M), Large(L)}. The style has attraction w1 = 3

and unit price p1 = 1. Let all customers in the market have the same size substitution parameter

α0 and each of customer type with τ = (s,σ,α0) has weight 0.25 for s∈ {M,L} and σ ∈ {+,−}. We

assume that only the M -size is currently available and the L-size is out of stock, i.e., Aℓ = {(1,M)}.

If we assume that the coming customer ℓ will not consider adjacent sizes, i.e., β0 := exp(−α0) = 0,

then the expected revenue collected from this customer is p1×(0.25+0.25)×(w1/(1+w1)) = 0.375.

If we assume that the customer will consider adjacent size with parameter β0 = 2/3, then the

expected revenue is 0.375+p1 ·0.25 ·βw1/(1+βw1) = 0.525. The difference in the expected revenue

comes from that the fact that in the former case, if the customer happens to be the type (L,−, α0)

and if we assume that she won’t consider the M -size T-shirt at all, then the demand of (1,M) is

underestimated, leading to an underestimation of the expected revenue. □

From the example, if we do not consider size substitution, we would mistakenly assume that a

product of size k can only attract customers whose best-fit size is k and overlook the possibility that

the product may be appealing to customers of adjacent sizes. Such underestimation of a product’s

expected revenue may also lead to suboptimal inventory decisions, as the firm would not stock

the product at all if the product’s cost c1 is greater than 0.375 in Example 3. This hints that

size substitution should be taken into account in inventory planning, at least when the expected

demand over the selling horizon is low, as we show next.
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5.3. An IP-Based Inventory Policy

Due to the computational challenges in stockout-based substitution, we first consider solving a

lower bound of Problem (12):

PLB : maximize
I∈NJK

+

[ ∑
(j,k)∈N

pj ·min{Tλ ·πjk(I) , Ijk}−
∑

(j,k)∈N

cj · Ijk
]
, (13)

where πjk(I) = P((j, k) |A(I)) is the choice probability of product (j, k) based on the set of available

products. The objective function in PLB is indeed a lower bound to the objective Π of Problem (12).

It first assumes that customers arrive in a deterministic manner and then approximates a product’s

demand based on its choice probability given the initial set of available products. Such inventory

problems have been widely considered in the literature (Ryzin and Mahajan 1999, Topaloglu 2013)

due to their simplicity and tractability compared to the stockout-based substitution problems. In

the context of the style-size choice model, the lower bound model (13) utilizes the size substitution

effect through the initial assortment. We further approximate the lower bound model (13) by

assuming that the style-size choice model has an average size sensitivity parameter α0 and solve

the corresponding inventory problem by a linear mixed-integer program. Therefore, the collection

of customer types is Γ = {(s,σ,α0) | s ∈ K, σ ∈ {+,−}}. One can easily relax this assumption by

expanding Γ, as discussed in Section 3.4, though it comes at the expense of introducing additional

variables.

We define variables as follows. Let I ∈ NJK
+ be the inventory decision for stocking Ijk units for

product (j, k) and variable ξ ∈RJK
+ be the sales of each product (j, k). A key step of solving Prob-

lem (13) is to connect the choice probability π = (πjk)j∈J ,k∈K with the choice model. Specifically,

we use x∈ {0,1}JK to indicate whether each product (j, k) is available at time t= 0. We also define

variables y = (yj,τ )j∈J ,τ∈Γ for the construction of the consideration sets described in Section 3.2.

Variable yj,τ indicates whether a customer of type τ ∈ Γ will consider her adjacent size for style j.

Consequently, when we have the following constraints for customer type τ = (s,σ,α0)∈ Γ:

yj,τ ≤ xj,adjσ(s), yj,τ ≤ 1−xj,s, xj,adjσ(s) −xj,s ≤ yj,τ . (14)

This constraint enforces that customer τ = (s,σ,α0) will not consider the adjacent size adjσ(s)

unless the best size s of style j is not available. Next, to represent the choice probability (4) of each

customer type, which is a linear-fractional form, we use the classic linearization technique (Charnes

and Cooper 1962). For each customer type τ , we use hτ to denote its no-purchase probability and

further use θj,τ and ϕj,τ to denote the products xj,shτ and yj,τhτ , respectively. We thus have the

following constraint system that linearizes hτ , θj,τ and ϕj,τ :

hτ +
∑
j∈J

wjθj,τ +
∑
j∈J

β0wjϕj,τ = 1, (15)
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θj,τ ≤ hτ , θj,τ ≤ xj,s, hτ ≤ 1+ θj,τ −xj,s, (16)

ϕj,τ ≤ hτ , ϕj,τ ≤ yj,τ , hτ ≤ 1+ϕj,τ − yj,τ . (17)

Finally, as the demand πjk of product (j, k) comes from customers whose best fit size is k and from

customers of adjacent sizes, we have

πjk/wj =
∑

τ∈{(k,+,α0),(k,−,α0)}

µτθj,τ +
∑

τ∈{(k−1,+,α0),(k+1,−,α0)}

β0µτϕj,τ , (18)

where the second sum characterizes the size substitution from customers of adjacent sizes. With

the defined variables and the constraints, we write down the following mixed-integer linear program

to solve the lower bound (13), which we call the IP-based inventory policy.

PLB-IP := maximize
∑
k∈K

∑
j∈J

(pj · ξj,k − cj · Ijk) (19)

subject to ξjk ≤ Tλ ·πjk, ξjk ≤ Ijk, xjk ≤ Ijk ≤M ·xjk ∀k ∈K, j ∈J ,

Constraints (14)-(18)

Ijk, ξjk ∈N+, xjk ∈ {0,1}, πjk, yj,τ , θj,τ , ϕj,τ ∈ [0,1].

Here M is a large constant in the big-M notation. For the boundary cases of sizes, we simply set

xj,k−1 = 0 for k= 1 and xj,k+1 = 0 for k=K.

In the following numerical study, we examine the performance of the IP-based inventory policy

and highlight its advantages when the expected demand over the selling horizon is low, which is in

contrast to the asymptotic regime to be introduced in Section 5.4. We calibrate the choice model

parameters using the real-world dataset discussed in Section 4, including the utility vj for each style

j ∈J and the fraction µτ of customer type τ . The dataset also provides the price pj for each style

j ∈ J , while the cost cj of the product is not available. To address this, we make an assumption

that the firm implements a 120% markup pricing scheme. This assumption aligns with insights

from practitioners (Farra 2019, Claypoole 2019) which suggest that firms usually markup products

with a 120% to 150% margin. We vary the expected number of customers L̄= Tλ to evaluate the

performance of the policies in the non-asymptotic regime. From Section 4.1 we know that each store

receives approximately W = 4000 visitors per week on average. Consequently, we examine scenarios

ranging from one month (roughly four weeks) to eight months (roughly thirty-two weeks) by setting

L̄∈ {4W,8W,12W,16W,20W,24W,32W}, consistent with the scale we observed in Section 4.

We conduct a comparison between the IP-based inventory policy and two benchmark inventory

policies: the newsvendor policy and the fluid approximation (Zhang et al. 2024). Specifically, the

newsvendor policy is given by the standard quantile policy in which the demand of each product

(j, k) is treated independently. The fluid approximation stocks Ijk units of product (j, k) as IFAjk =
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⌈Tλ ·P ((j, k) |A∗)⌉, where A∗ is the optimal assortment to Problem (9) with rj = pj−cj. We remark

that both the newsvendor policy and the fluid approximation are size-substitution-invariant. That

is, the stocking decisions under both policies ignore the value of α0. For the newsvendor policy,

such property is obviously true as the policy views each product’s demand independently. For the

fluid approximation, since P(· | A∗) is invariant under α0 according to Theorem 1, we know that

the resulting stocking decision ⌈Tλ ·P (· |A∗)⌉ is also invariant.

In what follows, we assess the performance of each inventory policy by evaluating the expected

profit generated by the corresponding inventory vector. Specifically, let IIP, IFA, and INV be the inven-

tory vector returned by the IP-based, fluid approximation, and newsvendor policies, respectively. To

evaluate the profit Π(·) associated with each inventory vector, we employ Monte Carlo simulation

based on the stochastic process outlined in Section 5.2, along with the common random number

technique for variance reduction. We consider two values for β0 = exp(−α0) ∈ {24.9%,100.0%}.

The former corresponds to the estimated value α0 = 1.39 obtained from the dataset, whereas the

latter represents the maximum value that β0 can take, which happens when α = 0, as stated in

Lemma 1. It corresponds to the scenario that customers are highly tolerant to the adjacent sizes

and the demand loss due to the stock-out of the best-fit size can be completely compensated by

the adjacent sizes. By examining these two values, we can explore a range of scenarios and assess

the sensitivity of the results.

β0 = 24.9%

Πper
BT NSize NProd

L̄ INV IFA IIP IIP IIP

4W -18.88 -18.65 0.11 3.0 3
8W -4.45 -3.89 0.79 2.7 30
12W -0.16 0.53 1.72 2.6 90
16W 1.30 2.09 2.49 3.7 162
20W 2.71 3.28 3.42 4.5 230
24W 3.02 3.53 3.59 5.4 275
32W 3.71 4.31 4.34 7.1 362

β0 = 100.0%

Πper
BT NSize NProd

L̄ INV IFA IIP IIP IIP

4W -18.88 -18.65 0.29 2.0 12
8W -3.07 -2.39 2.07 2.5 86
12W 1.57 2.34 3.74 3.2 161
16W 2.50 3.23 4.13 3.9 201
20W 3.51 4.16 4.69 4.6 235
24W 3.93 4.68 5.05 4.9 250
32W 4.98 5.54 5.67 5.6 286

Table 3 Expected profit per customer Πper
BT, sizes offered NSize, and products available NProd for varying

demand L̄ with β0 ∈ {24.9%,100.0%}. The newsvendor and fluid approximation offer all products (and sizes).

Table 3 displays Πper
BT(·), the expected profit per customer visit to the casual booties category,

which is defined as Πper
BT(·) = Π(·)/L̄BT. Note that we do not have the exact customer traffic for

casual booties in the dataset. We thus approximate L̄BT by multiplying the total customer visits

L̄ by the fraction of sales of the casual booties category (roughly 2.8%), i.e., L̄BT = 0.028L̄. The

table also presents the number of sizes offered NSize and the number of products available NProd
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Figure 3 Inventory profile of the three policies for the four most popular styles (of the fifty-one) and nine sizes,

with L̄= 12W and β0 = 24.9% (where the prime sign represents half sizes)

under the IP-based policy. The newsvendor and fluid approximation offer all styles in all sizes, so

the number of products available under those policies is 51× 9 = 459.

In Table 3, we observe that all three inventory policies exhibit superior performance when L̄ is

large, which can be attributed to the decreased demand volatility. However, when L̄ is small, both

the newsvendor and fluid approximation perform poorly regardless of the level of size substitution

given by the parameter β0. The reason is that these two polices stock too much – at least one

unit for each size of each style – so substitution does not occur, in which case β0 is irrelevant.

In contrast, the IP-based policy incorporates size substitution and strategically offers a smaller

set of sizes and styles to satisfy the demand, resulting in positive profits. Figure 3 visualizes the

stocking decisions made by the three inventory policies for the four most popular styles out of 51

in the dataset when L̄= 12W and β0 = 24.9%. Note that Style A is also the most expensive style.

The figure shows that, in contrast to the newsvendor and fluid approximation, the IP-based policy

does not offer the complete range of sizes for all styles. Instead, it leverages the size substitution

effect to fulfill unmet demand. For instance, it does not offer sizes 6 and 10 of Styles C and D, as

the demand of these products can be covered by sizes 6.5 and 10.5 of the same style, respectively.

The IP-based policy also holds less inventory: 1.5 units per product in Figure 3, whereas the fluid

approximation and newsvendor hold 1.8 and 2.3 units per product, respectively.

We also observe that the profitability of the IP-based policy is higher as size substitution becomes

more prevalent. In the left panel of Table 3, we can see that the expected profit per customer of the

IP-based policy is 19% higher compared to the fluid approximation when L̄= 16W and β0 = 24.9%.

This advantage increases to 28% when β0 = 100.0%, as shown in the right panel. Similarly, while

IIP and IFA statistically have the similar performance when L̄= 32W and β0 = 24.9%, the former is

strictly better than the latter for the same L̄ when β0 = 100.0%. This highlights the importance of
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incorporating size substitution when customers show a strong tendency to explore adjacent sizes.

However, the advantage of the IP-based policy diminishes as L̄ increases. In the left panel where

β0 = 24.9%, the advantage of IIP over IFA shrinks from 19% to 1% as L̄ increases from 16W to

32W . Moreover, we will show that the IP-based policy and the fluid approximation have the same

asymptotic limit (see Section 5.4). Since the fluid approximation is size-substitution-invariant, the

convergence of both policies suggests that the effect of size substitution shrinks as overall demand

increases. We will revisit this discussion from a theoretical standpoint in Section 5.4.

It is hard to compare the IP-based policy to the (average) store performance reported in Table 1

because the latter includes inventory replenishment and the styles were introduced in a staggered

manner. However, it is worth noting that the maximum number of products available was 359.2

over an horizon of 33 weeks. This contrasts with the IP-policy that suggests carrying 362 products

when L̄= 32W and β0 = 24.9%. In terms of sizes offered, the average store in Table 1 started with

8.4 sizes whereas the IP-policy suggests 7.1. In other words, the IP-policy offers slightly less sizes

but they are distributed across a wider selection of styles. Indeed, all styles are initially available

under the IP-policy since 362/7.1 = 51, whereas a back-of-the-envelope calculation based on Table 1

gives 359.2/8.4 = 42.8.3

We end the discussion with two additional remarks. First, the IP-based policy is not compu-

tationally too expensive. For all instances in Table 3, the mixed-integer linear program (19) was

optimally solved within five minutes; see Appendix D.1 for more details. Given that these instances

involve nearly five hundred products, this runtime highlights the compactness of the style-size

choice model. Second, the IP-based policy is flexible in accommodating other business constraints.

It offers the convenience of incorporating capacity limitations into product inventory, which can

be based on factors such as style or size. For instance, one can enforce a distinction between major

and minor sizes and ensure that minor sizes are not offered unless all major sizes are provided.

This type of policy has already found successful implementation in the fashion industry (Caro and

Gallien 2010). In our study, we have incorporated such constraints into the IP-based policy and

present its performance in Appendix D. Additionally, the IP-based policy allows for easy inclusion

of initial stock or remaining stock from the previous period in the integer program. Combining

these features with its favorable performance for short planning horizons, the IP-based policy can

be an effective tool for making replenishment decisions during the sales season.

3 More precisely, the 359.2 products in the average store came from 44.75 styles and 8.03 sizes.
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5.4. Asymptotically, Size Substitution Does Not Matter

In this section we study the asymptotic regime, i.e., when the expected customer volume L̄= Tλ

grows to infinity. Recall that by Theorem 1, the fluid approximation can be expressed as IFAjk =

⌈L̄ ·P((j, k) |A∗)⌉ ≡ ⌈L̄ρjµ̄k⌉, where

ρj =
wj · Ij≤j∗

1+
∑

j≤j∗ wj

and µ̄k =

∫ ∞

0

∑
σ∈{+,−}

µ(k,σ,α)dα. (20)

Here j∗ is defined as in the style-only assortment problem (10) with margin rj = pj − cj. As men-

tioned, the fluid approximation is size-substitution-invariant because the quantities it prescribes

are independent of the size sensitivity parameter α and its distribution. One can interpret the fluid

approximation as follows. The firm first solves the style-only MNL assortment optimization prob-

lem (10) to decide which styles to offer. For each offered style j ∈ {1,2, . . . , j∗}, the store will stock in

total L̄ρj units, which is based on the style-only MNL model. Furthermore, among these L̄ρj units

of style j, the store allocates a fraction µ̄k of it to size k, i.e., it stocks L̄ρjµ̄k units for product (j, k),

where µ̄k is the fraction of customers whose best-fit size is k. The fluid approximation actually is

an aggregation-disaggregation approach, as the firm first aggregates all products across sizes when

deciding which styles to offer, and then disaggregates or “splits” the demand of each offered style

among sizes. In the following proposition we show that such aggregation-disaggregation approach

is asymptotically optimal.

Proposition 1. Assume that the maximal product price pmax = maxj pj and the maximal prod-

uct cost cmax = maxj cj are independent of both the horizon T and the customer arrival rate λ.

For the stockout-based inventory optimization problem (12), the fluid approximation policy IFA has

optimality gap O
(√

JK ·Tλ
)
and it is asymptotically optimal.

Note that the asymptotic performance is defined as the approximation ratio of an inventory policy

relative to the optimal solution as Tλ→∞. In Section B.3 where we prove the proposition, we show

that the approximation ratio converges to one under the fluid approximation policy, implying the

asymptotic optimality. Alternatively, Proposition 1 shows that as the customer volume increases,

the profit loss per customer eventually reaches to zero. This follows from the fact that while the

optimality gap grows at a rate of
√
Tλ, the expected number of customer scales as Tλ.

Proposition 1 has an intuitive interpretation: as customer volume increases, the stochasticity of

the problem diminishes because the standard deviation of demand grows at a slower rate, so just

stocking the mean becomes a sufficiently good strategy, which is akin to ignoring size substitution

as in Theorem 1. Formally, our proof follows the performance guarantee of the fluid approximation

in the inventory problem under choice models that satisfy the substitutability property (Zhang
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et al. 2024). Per Lemma 1, the result in Zhang et al. (2024) is applicable to our inventory problem,

though a modification is required to consider a random number of customer arrivals L, as Zhang

et al. (2024) assume that the number of customer visits is deterministic and known in advance.

We highlight that Proposition 1 supports the common practice of ignoring size substitution for

stocking purposes. However, ignoring both style and size substitution like in the newsvendor model

could lead to a poor performance. We demonstrate this observation in Appendix D.3. Another

important observation is given in the following proposition. It shows that the performance of the

IP-based solution IIP introduced in Section 5.3 and the fluid approximation IFA becomes indistin-

guishable when the expected demand L̄ is sufficiently large.

Proposition 2. The IP-based policy and the fluid approximation have the same asymptotic per-

formance.

Proposition 2 gives an edge to the IP-based policy because it matches the asymptotic performance

of the fluid approximation, and per section 5.3, it has a better performance in the non-asymptotic

regime. Put differently, in the asymptotic regime a “wide-net” approach that stocks all sizes works

well, whereas in the non-asymptotic regime a more targeted approach is better. One can think

that the former is more applicable to online settings, whereas the latter could make more sense for

brick-and-mortar stores. Finally, to complement Propositions 1 and 2, in Appendix E, we further

explore the asymptotic performance of a fluid-like policy under general choice model environment

that may not follow the substitutability property of Lemma 1.

6. Conclusion and Future Directions

We introduced the style-size choice model to capture size substitution effects and demonstrated,

using real-world data, that unmet demand due to stockouts shifts to adjacent sizes of the same style.

We then analyzed assortment and inventory optimization under this model, showing that firms can

disregard size substitution in static (assortment-based) settings and in dynamic (stockout-based)

settings when the demand is high. In the low-demand regime, we proposed an IP-based solution to

leverage size substitution in a computationally tractable manner. Our work opens several directions

for future research, such as allowing for inventory replenishment or incorporating a goodwill cost

when customers like a style but cannot find a suitable size. The latter could lead to excessive

leftover inventory, adding an environmental dimension to the problem. Additionally, it would be

valuable to investigate whether other choice models, once the apparel style and size structure are

incorporated, would also yield a simplified optimal assortment structure.
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Appendix A: Model Estimation: The EM Algorithm

We propose an estimation procedure for the average style-size choice model (6) based on the

expectation-maximization (EM) algorithm. We will show that the model leads to a clean M step

in the EM algorithm, which only requires solving a single concave maximization problem. We will

highlight the simplicity and the flexibility of the EM algorithm of the style-size choice model in

Section A.3 when comparing to that of other choice models.

We assume that we have access to stores’ inventory and sales data. In particular, let Nmt be

the number of visitors to store m ∈M during week t ∈ T . Let the non-negative integer Imt
(j,k) be

the inventory of product (j, k) ∈ N at store m ∈M at the beginning of week t ∈ T . Let Amt =

{(j, k) ∈N | Imt
(j,k) > 0} denote the set of available products (assortment) at the beginning of week

t at store m. Let Qmt
(j,k) be the sales during week t at store m for product (j, k) ∈ Amt. This

form of data (Nmt,{Qmt
(j,k)}(j,k)∈Amt)m∈M,t∈T has been widely used in the inventory management

literature (Boada-Collado and Mart́ınez-de Albéniz 2020). Notice that by definition Qmt
(0,0) =Nmt−∑

(j,k)∈Amt Qmt
(j,k) is the number of customers who visited the store m at week t but didn’t make a

purchase (or made an outside choice). Finally, let IE be the indicator function that equals one if

event E is true.

Note that we do not observe customer types in the dataset and they can be considered a latent

variable in this case. Therefore, we consider an expectation-maximization (EM) approach to esti-

mate the model from data, which is a popular procedure to estimate predictive models with latent

variables (McLachlan and Krishnan 2007). We also incorporate the fixed effects for seasonality in

the estimation. As observed in Section 4, our dataset consists of sales across thirty-three weeks,

covering the spring and fall sale seasons. It is thus important to capture how sales were affected by

seasonality. To this end, we assume that the size-independent part of the utility of product (j, k)

in week t is vj + vt, instead of vj, in Equation (1).

A.1. The Complete Data Log-Likelihood Function

Recall that with the average style-size choice model (6), our goal is to estimate α= α0, the average

size sensitivity parameter, along with the style utility parameters (vj)j∈J , the seasonality parame-

ters (vt)t∈T , and the distribution over customer types µτ , where a type is τ = (s,σ,α0). Note that in

the average model, the collection of customer types is reduced to Γ= {(s,σ,α0) | s∈K, σ ∈ {+,−}}.

For now, assume that we have the “complete” data
(
Nmt

τ ,{Qmt
τ,(j,k)}(j,k)∈Amt

)
τ∈Γ,m∈M,t∈T

, which

include customers’ types. Here Nmt
τ is the number of type-τ visitors at store m during week t and

Qmt
τ,(j,k) is the number of sales of product (j, k) made by type-τ visitors at store m during week
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t. Obviously, we have Nmt =
∑

τ∈ΓN
mt
τ and Qmt

(j,k) =
∑

τ∈ΓQ
mt
τ,(j,k). The likelihood of the complete

data for store m during week t is

fmt
complete =

Nmt!∏
τ N

mt
τ !

·
∏
τ

(µτ )
Nmt

τ ·
∏
τ

fmt
τ,complete,

where factor (Nmt!/
∏

τ N
mt
τ !) ·

∏
τ (µτ )

Nmt
τ is the multinomial distribution of customer types and

fmt
τ,complete

(
Nmt

τ ,{Qmt
τ,(j,k)}(j,k)∈Amt

)
=

Nmt
τ !(

Nmt
τ −

∑
(j,k)∈Amt Qmt

τ,(j,k)

)
! ·
∏

(j,k)∈Amt Qmt
τ,(j,k)!

·

( ∏
(j,k)∈Amt

Pmt
τ ((j, k) |Amt)

Qmt
τ,(j,k)

)
·
(
1−

∑
(j,k)∈Amt

Pmt
τ ((j, k) |Amt)

)Nmt
τ −

∑
(j,k)∈Amt Q

mt
τ,(j,k)

.

Take logarithm of
∏

m,t f
mt
complete, we obtain the complete data log likelihood. Specifically, the com-

plete data log-likelihood function is equal to a constant plus Lcomplete = L1 + L2, where L1 ≡∑
τ∈Γ

(∑
m,tN

mt
τ

)
· log (µτ ) and

L2 ≡
∑
m,t,τ

∑
(j,k)∈Amt

Qmt
τ,(j,k) ·

[
(vj + vt) · I(j,k)∈C1

τ (A
mt) +(vj + vt −α0) · I(j,k)∈C2

τ (A
mt)

]
−
∑
m,t,τ

Nmt
τ · log

(
1+

∑
(j,k)∈C1

τ (A
mt)

evj+vt +
∑

(j,k)∈C2
τ (A

mt)

evj+vt−α0

)
.

Note that the L1 only depends on µ = (µτ )τ∈Γ while L2 only depend on (v, α0), where v ≡

((vj)j∈J , (vt)t∈T ). Therefore, to find the model parameter (µ,v, α0) that maximizes the complete

data log likelihood Lcomplete, we solve two separate optimization problems,

P complete
1 : maximize

1Tµ=1, µ≥0

{
L1

∣∣∣∣ µ(s,+,α0) = µ(s,−,α0), ∀s∈K
}

and P complete
2 : maximize

α≥0,v

{
L2

}
,

where the constraints in P complete
1 come from the symmetric-weight assumption in the average

style-size model. Note that P complete
1 has a closed-form unique solution µ(k,+,α0) = µ(k,−,α0) =∑

m,t

(
Nmt

(k,+,α0)
+Nmt

(k,−,α0)

)
/
(
2 ·
∑

m,t,τ N
mt
τ

)
. Meantime, the second problem P complete

2 is a concave

maximization problem in (v, α0) that can be solved using standard optimization software.

A.2. The E and M steps of the EM algorithm

Recall that we do not observe customer types in the data. Therefore, the parameters Nmt
τ and

Qmt
τ,(j,k) in optimization problems P complete

1 and P complete
2 are not available. We will instead replace

them by their conditionally expected values given the choice model parameter ν = (µ,v, α0).

We start with any initialization of values of ν(0). In the EM algorithm, we generate a sequence of

parameters {ν(q), q= 1,2, . . .} until convergence. Assume that we are currently in the qth iteration.

We describe how we generate model ν(q+1) based on ν(q) through an “E” step then an “M” step.
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The E Step: By Bayes’ rule, given an assortment Amt at store m during week t, product (j, k)∈

Amt ∪ {(0,0)}, and model parameter ν(q), we can infer the likelihood that a sale of (j, k) was

contributed by a type-τ customer via

Pmt(τ |Amt, (j, k),ν(q)) =
Pmt
τ ((j, k) |Amt,v(q))×µ(q)

τ∑
τ ′|(j,k)∈Cτ ′ (A

mt) Pmt
τ ′ ((j, k) |Amt,v(q))×µ

(q)

τ ′

,

where Pmt
τ ((j, k) |Amt,v(q)) is defined as in Equation (4) with α replaced by α

(q)
0 and vj replaced

by v
(q)
j + v

(q)
t since we consider the fixed effect for seasonality. For a customer type τ such that

(j, k) /∈ Cτ (A
mt), the conditional value is simply zero. With the conditional probability, we have

that, for (j, k)∈Amt ∪{(0,0)}, the expected sales from customer type τ on product (j, k) at store

m during week t is Q̂mt
τ,(j,k) =Qmt

(j,k) ·Pmt(τ |Amt, (j, k),ν(q)) and N̂mt
τ =

∑
(j,k)∈Amt∪{(0,0)} Q̂

mt
τ,(j,k).

The M Step: The M step is to replace the parameters Nmt
τ and Qmt

τ,(j,k) in the complete data

log-likelihood Lcomplete from Section A.1 by the conditional expected value N̂mt
τ and Q̂mt

τ,(j,k)

obtained in the E step, respectively, and then optimize the log-likelihood. Therefore, ν(q+1) =

(µ(q+1),v(q+1), α
(q+1)
0 ) is updated by µ(q+1)

τ =
∑

m,t

(
N̂mt

(s,+,α0)
+ N̂mt

(s,−,α0)

)
/
(
2 ·
∑

m,t,τ ′ N̂
mt
τ ′

)
if τ =

(s,+, α0) or (s,−, α0) and (v(q+1), α
(q+1)
0 ) is the unique optimizer of P complete

2 with a problem

instance of N̂mt
τ and {Q̂mt

τ,(j,k)}.

The procedure alternates between the E and M steps until the model parameter ν(q) converges.

A.3. Remarks

The EM algorithm has been used for estimating choice models from data. Examples include the

estimation of the LC-MNL model (Train 2009), the general attraction model (GAM) (Gallego

et al. 2015), the ranking-based model (van Ryzin and Vulcano 2014), and the decision forest model

(Chen and Mǐsić 2022). In general, the efficiency of the EM algorithm depends on whether once

can solve the M step easily under a choice model. For example, in the LC-MNL model, the M step

requires to solve K concave maximization problems, where K is the number of the customer types.

In the GAM model, the M step cannot be solved as a concave maximization problem. Gallego

et al. (2015) thus instead consider minimizing the square error by ignoring the no-purchase option.

In the ranking-based model, the M step is amount to solve a linear ordering problem, which is

NP-hard, and van Ryzin and Vulcano (2014) solve it by a mixed-integer linear program.

In contrast, the M step for the style-size choice model is surprisingly simple, as it only requires

solving a single concave maximization problem P complete
2 . This simplicity comes from our model

formulation, especially from the design of the consideration sets C1
τ (A) and C2

τ (A) and the fact

that the choice from the two sets can be separated in the log-likelihood function. Furthermore,

such structure in the M step still exists even if we generalize the style-size model and incorporate

store-specific parameters, such as the store intrinsic utility (vm)m∈M and store-dependent best-fit
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distribution (µm,τ )m∈M,τ∈Γ
. These parameters can be useful for designing localized assortments

and local inventory levels (Fisher and Vaidyanathan 2014). This highlights the flexibility of the

style-size choice model and its EM estimation procedure.

Appendix B: Proofs

B.1. Proof for Lemma 1

We focus on a customer type (s,+, α). The proof for customer type (s,−, α) follows a similar

argument. We first prove the necessary condition. That is, we will show that P(s,+,α) satisfies the

substitutablility property if α≥ 0. We first define functions

Fj(A) = I [(j, s)∈A] +β · I [(j, s) /∈A and (j,adj+(s))∈A] ,

for all assortment A⊆N and style j ∈ J , where β = exp(−α). One can easily verify that Fj(A)

will not decrease if we add a new product to A as long as β ≤ 1.

Now we will show that the choice probability P(s,+,α)((j, k) |A) for a given product (j, k) will not

increase after adding any new product to assortment A. For simplicity, we write wj = exp(vj) for

all j ∈J . We consider three cases.

• Case 1: k= s. Then we can write

P(s,+,α)((j, s) |A) =
wj

1+wj +
∑

i̸=j wiFi(A)
.

Then no matter which product we add to A, P(s,+,α)((j, k) | A) will not increase due to the

monotonicity of Fi(A) for all i ̸= j.

• Case 2: k= adj+(s). If (j, s)∈A, then P(s,+,α)((j, k) |A) = 0 stays as zero no matter what we

add to A; else if (j, s) /∈ A and we add (j, s) to A, then P(s,+,α)((j, k) | A) decreases to zero;

else if (j, s) /∈A and we add a product other than (j, s) to A, then P(s,+,α)((j, k) |A) will not

increase, since the denominator in the expression

P(s,+,α)((j, k) |A) =
βwj

1+βwj +
∑

i ̸=j wiFi(A)

will not decrease no matter what we add to the assortment.

• Case 3: k /∈ {s,adj+(s)}. The choice probability P(s,+,α)((j, k) |A) is always zero and thus will

not increase.

For the sufficient condition, it amounts to show that if α< 0, then there exists an assortment A

such that the choice probability of an option increases as A enlarges. Consider A= {(j,adj+(s))}.
Then we have

P(s,+,α) ((0,0) |A) =
1

1+βwj

<
1

wj

= P(s,+,α) ((0,0) |A∪{(j, s)}) ,

where the inequality holds since β = exp(−α)> 1 when α< 0 and the assortment A is enlarged by

adding product (j, s). □
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B.2. Proof of Theorem 1

The main idea is to show that the optimal revenue Rτ (A) from each customer type τ = (s,σ,α),

where s∈K, α≥ 0, and σ ∈ {+,−}, is upper bounded by the optimal value z∗MNL of the style-MNL

assortment optimization problem (10). Therefore, the overall expected revenue would be upper

bounded by the same value, i.e.,

R(A) =
∑
s,σ

∫ ∞

0

µ(s,σ,α) ·R(s,σ,α)(A)dα≤
∑
s,σ

∫ ∞

0

µ(s,σ,α) · z∗MNLdα= z∗MNL.

We then show that this upper bound is attached by the revenue-ordered assortment (11) in Theo-

rem 1.

We first focus on the revenue collected from a fixed customer type τ = (s,+, α) and provide

several lemmas around it. We denote β = exp(−α) and wj = exp(vj) for all j ∈ J to simplify the

notation. Define N+
s = {(j, k) | j ∈ J , k ∈ {s,adj+(s)}, which is a subset of N that includes all

products of sizes s and adj+(s). Note that function Rτ (A) can be written as

Rτ (A) =

∑
(j,k)∈C1

τ (A) rjwj +
∑

(j,k)∈C2
τ (A) βrjwj

1+
∑

(j,k)∈C1
τ (A)wj +

∑
(j,k)∈C2

τ (A) βwj

.

Notice that Rτ (A) =Rτ (A∩N+
s ) for any assortment A⊆N , since any product of sizes other than

s and adj+(s) will not be considered by customer τ = (s,+, α) and thus will not contribute to the

revenue Rτ . Therefore, to discuss the revenue Rτ (A), it suffices to only discuss Rτ (A) for A⊆N+
s .

The following lemma tells us that it is always good to introduce a style of correct size if the style

is more profitable than the current assortment.

Lemma 2. Consider a fixed customer type τ = (s,+, α). Suppose A⊆N+
s and (i, s) /∈A for a style

j ∈J . If rj >Rτ (A), then Rτ (A∪{(j, s)})>Rτ (A).

Proof: Denote the larger-adjacent size of the customer by ℓ= adj+(s). Let I(j,ℓ)∈A be the indicator

that whether the larger-adjacent size ℓ of style j is in the assortment A. We can write the revenue

of Rτ (A∪{(j, s)}) as

Rτ (A∪{(j, s)}) =
rjwj +

∑
(i,k)∈C1

τ (A):i ̸=j riwi +
∑

(i,k)∈C2
τ (A):i ̸=j βriwi

1+wj +
∑

(i,k)∈C1
τ (A):i ̸=j wi +

∑
(i,k)∈C2

τ (A):i ̸=j βwi

=

(
wj · (1− I(j,ℓ)∈Aβ)

1+wj +
∑

(i,k)∈C1
τ (A):i ̸=j wi +

∑
(i,k)∈C2

τ (A):i̸=j βwi

)
· rj+(

βrjwjI(j,ℓ)∈A +
∑

(i,k)∈C1
τ (A):i ̸=j riwi +

∑
(i,k)∈C2

τ (A):i ̸=j βriwi

1+wj +
∑

(i,k)∈C1
τ (A):i ̸=j wi +

∑
(i,k)∈C2

τ (A):i ̸=j βwi

)

=

(
wj · (1− I(j,ℓ)∈Aβ)

1+wj +
∑

(i,k)∈C1
τ (A):i ̸=j wi +

∑
(i,k)∈C2

τ (A):i̸=j βwi

)
· rj+(

1+βwjI(j,ℓ)∈A +
∑

(i,k)∈C1
τ (A):i ̸=j wi +

∑
(i,k)∈C2

τ (A):i ̸=j βwi

1+wj +
∑

(i,k)∈C1
τ (S):i̸=j wi +

∑
(i,k)∈C2

τ (A):i ̸=j βwi

)
·Rτ (A)
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where we note that the revenue function Rτ (A) can be re-written as

Rτ (A) =
βrjwjI(j,ℓ)∈A +

∑
(i,k)∈C1

τ (A):i̸=j riwi +
∑

(i,k)∈C2
τ (A):i̸=j βriwi

1+βwjI(j,ℓ)∈A +
∑

(j,k)∈C1
τ (A):i ̸=j wi +

∑
(j,k)∈C2

τ (A):i ̸=j βwi

Therefore, Rτ (A∪{(j, s)}) is a convex combination of rj and Rτ (A). If rj > Rτ (A), then

Rτ (A∪{(j, s)})>Rτ (A). □

The next lemma tells us that if a product is less profitable than the current assortment, no

matter it is of the correct size or of the adjacent size, then we should exclude it from the current

assortment.

Lemma 3. Consider a fixed customer type τ = (s,+, α). Suppose (j, k)∈A⊆N+
s for a style j ∈J .

If rj ≤Rτ (A), then Rτ (A\{(j, k)})≥Rτ (A).

Proof: Again, we denote the larger-adjacent size of the customer by ℓ= adj+(s). Let I(j,ℓ)∈A be

the indicator that whether the larger-adjacent size ℓ of style j is in the assortment A. We consider

two cases.

1. For k= s. Similar to the construction in the proof of Lemma 2, we have Rτ (A) = γ · rj +(1−
γ) ·Rτ (A\{(j, s)}),where

γ =
wj ·

(
1− I(j,ℓ)∈Aβ

)
1+wj +

∑
(i,k)∈C1

τ (A):i̸=j wi +
∑

(i,k)∈C2
τ (A):i̸=j βwi

and

Rτ (A\{(j, s)}) =
rjwjβ · I(j,ℓ)∈A +

∑
(i,k)∈C1

τ (A):i ̸=j riwi +
∑

(i,k)∈C2
τ (A):i ̸=j βriwi

1+wjβ · I(j,ℓ)∈A +
∑

(i,k)∈C1
τ (A):i ̸=j wi +

∑
(i,k)∈C2

τ (A):i ̸=j βwi

Therefore,

Rτ (A\{(j, s)}) = Rτ (A)− γrj
1− γ

≥ Rτ (A)− γRτ (A)

1− γ
=Rτ (A).

2. For k = ℓ. Recall that ℓ = adj+(s). If (j, s) ∈ A, then Rτ (A\{(j, ℓ)}) = Rτ (A), as (j, ℓ) are

already not considered when (j, s) is available. Now we assume (j, s) /∈A, and we have Rτ (A) =

γ′ · rj +(1− γ′) ·Rτ (A\{(j, s)}), where

γ′ =
wjβ

1+wjβ+
∑

(i,k)∈C1
τ (A):i ̸=j wi +

∑
(i,k)∈C2

τ (A):i̸=j βwi

and

Rτ (A\{(j, ℓ)}) =
∑

(i,k)∈C1
τ (A):i ̸=j riwi +

∑
(i,k)∈C2

τ (A):i ̸=j βriwi

1+
∑

(i,k)∈C1
τ (A):i ̸=j wi +

∑
(i,k)∈C2

τ (A):i ̸=j βwi

Therefore,

Rτ (A\{(j, ℓ)}) = Rτ (A)− γ′rj
1− γ′ ≥ Rτ (A)− γ′Rτ (A)

1− γ′ =Rτ (A).
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□

The next lemma shows that given a customer type τ = (s,+, α), its expected revenue Rτ (A)

is upper bounded by z∗MNL and the upper bound is attached by a revenue-ordered assortment of

products of the customer’s best-fit size s.

Lemma 4. Consider a customer type τ = (s,+, α). Denote z∗ ≡ maxA⊆N+
s
Rτ (A). Then Ao =

{(j, k) | rj > z∗, j ∈J } is an optimal solution to the problem maxA⊆N+
s
Rτ (A). In addition,

z∗ = z∗MNL ≡max
j∈J

{ ∑j

i=1 riwi

1+
∑j

i=1wi

}
.

Proof: Obviously, z∗ exists and it is finite since N+
s is a finite set. We prove the first part of the

statement by contradiction. Suppose Ao is not an optimal solution and let A is an optimal solution

with smallest cardinality. The fact that A is optimal and z∗ =Rτ (A)>Rτ (Ao) imply that one of

the following statements must be true: (i) there exists a style j such that rj > z∗ and (j, s) /∈A; and

(ii) there exists a product (j, k) ∈A such that rj ≤ z∗ and k ∈ {s,adj+(s)}. Otherwise, if none of

them is true, then (j, k)∈A for all j ∈J satisfying ri > z∗ and (j, k) /∈A for all j satisfying rj ≤ z∗

and all k ∈ {s,adj+(s)}. One can then easily verify that Rτ (A) =Rτ (Ao), which is a contradiction

(that is to say, if none of (i) and (ii) is true, then A and Ao would be only different from each other

for size adj+(s) of styles j ∈ {j | rj > z∗}. Given that the correct size s of these styles are already

in both A and Ao, these products of the larger-adjacent size do not change the expected revenue

of A from A0. That means Rτ (A) =Rτ (A0), a contradiction.)

Now we know one of the statements (i) and (ii) about A must be true. However, if (i) is true,

we can conclude that

Rτ (A∪{(j, s)})>Rτ (A)

by Lemma 2, which contradicts the fact that A is an optimal solution. If (ii) is true, we can conclude

from Lemma 3 that the assortment A\{(j, k)} has a no-worse revenue

Rτ (A\{(j, k)})≥Rτ (A)

but has a smaller cardinality than A, which would contradicts the fact that A is an optimal assort-

ment with smallest cardinality. Therefore, neither (i) nor (ii) is true, which leads to a contradiction.

Thus, A0 is an optimal solution.

For the second part of the theorem, we first notice that Ao ∈Aorder, where Aorder is the collection

of all revenue-ordered assortments that only consist of products of size s

Aorder = {Aj
o | j ∈J }, where we define Aj

o ≡ {(1, k), (2, k), . . . , (j, k)}.
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For each revenue-ordered assortment Aj
o, we have Rτ (A

j
o) =

∑j

i=1 riwi/(1+
∑j

i=1wi). Therefore,

z∗ = max
A⊆N+

k

Rτ (A) = max
Ao∈Aorder

Rτ (Ao) =max
j∈J

{ ∑j

i=1 riwi

1+
∑j

i=1wi

}
,

where the second equality follows the first part of the theorem that we just proved. □

We note that Lemma 4 holds for any other customer types, as all the arguments in Lemmas 2 and

3 can easily follow for customer types in form of τ = (s,σ,α). In other words, maxARτ (A) = z∗MNL

for any τ = (s,σ,α) where s ∈ K, α ≥ 0, and σ ∈ {+,−}. It also holds when the best-fit size s is

a boundary size of K. For example, if kmax is the maximal size among K, then the corresponding

customer type (s,σ,α) for s= kmax behaves like a classic MNL model over products {(j, kmax) | j ∈

J }, as there is no larger-adjacent size to substitute to, again implying that maxARτ (A) = z∗MNL.

Applying Lemma 4 to all customer types τ = (s,σ,α), we simply prove Theorem 1 as follows.

Proof of Theorem 1: By Lemma 4 and the discussion above, we know that Rτ (A)≤ z∗MNL for all

customer types τ = (s,σ,α). Therefore, R(A) =
∑

s,σ

∫∞
0

µ(s,σ,α) ·R(s,σ,α)(A)dα ≤
∑

s,σ

∫∞
0

µ(s,σ,α) ·

z∗MNLdα = z∗MNL. On the other hand, one can easily verify that R(A∗) = z∗MNL for the assortment

defined in Equation (11). Therefore, A∗ is an optimal solution. □

Lastly, we remark that our proof of Theorem 1 follow a first-principle argument to determine

whether we can further improve the expected revenue by adding or removing products from the

assortment. The same proof technique was used by Rusmevichientong and Topaloglu (2012) to show

that the robust assortment optimization under the MNL model has a revenue-ordered structure.

B.3. Proof of Proposition 1

Our proof closely follows the argument in Zhang et al. (2024); see the proof of Theorem 3.1 in the

paper. To simplify the expression, we label products in N as {1,2, . . . , n}. There, n = JK when

there are J styles and K sizes. We consider an inventory problem under the following assumption:

Customers choose product i∈N according to the initial set S0 = {i | Ii ≥ 1}of available products. If

the product they choose is out of stock, then they leave without a purchase. We call this optimization

problem Pstatic. Given a inventory vector I, the profit of the inventory model is

Πstatic(I) =
∑
i∈N

pi ·E

{
min

{
Ii,

L∑
ℓ=1

Ciℓ(I
FA)

}}
−
∑
i∈N

ciIi (21)

Here, L is a random variable that represents the number of customer visiting in period [0, T ] and

Ciℓ(I) is the indicator that whether customer ℓ would choose product i from S0. If the underlying

choice model P(· | ·) is a substitutive model, then the profit Πstatic of this inventory problem is a

lower bound to the original dynamic inventory problem. This because if a product is out of stock,
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then the demand of other available products should increase (or stay the same) in the dynamic

inventory model. However, in Problem Pstatic, we assume that the demand of other products remains

the same. That implies we underestimate the revenue collected after the stock-out happens in

Problem Pstatic, resulting a lower bound to the dynamic problem. From here, we can also see why

the same argument does not apply to non-substitutive choice models. In non-substitutive models,

other products’ demand could shrink to a lower value after each stock-out, and the objective Πstatic

is thus no longer a lower bound.

Define πi = P(i |A∗), the choice probability of product i under the optimal assortment A∗. We

consider bounding the gap between Πstatic(I) with I= IFA ≡ (⌈Tλπi⌉)i∈N and Vfluid = Tλ
∑n

i=1(pi −
ci)πi. For simplicity, we call IFL = (Tλπi)i∈N , which is a vector that consists of fractional numbers.

Vfluid −Πstatic(I
FA) =

∑
i∈N

(pi − ci)I
FL
i −

∑
i∈N

pi ·E

{
min

{
IFAi ,

L∑
ℓ=1

Ciℓ(I
FA)

}}
+
∑
i∈N

ciI
FA
i

=
∑
i∈A∗

pi ·E

{
IFLi −min

{
IFAi ,

L∑
ℓ=1

Ciℓ(I
FA)

}}
+
∑
i∈N

ci · (IFAi − IFLi )

≤
∑
i∈A∗

pi ·E

{
IFLi −min

{
IFLi ,

L∑
ℓ=1

Ciℓ(I
FA)

}}
+
∑
i∈A∗

ci,

where in the last inequality we use the fact that IFLi ≤ IFAi < IFLi + 1. The second term is upper

bounded by |A∗| · cmax. The first term can be bounded as follows.∑
i∈A∗

pi ·E

{
IFLi −min

{
IFLi ,

L∑
ℓ=1

Ciℓ(I
FA)

}}
≤
∑
i∈A∗

pi ·E

{∣∣∣∣IFLi −
L∑

ℓ=1

Ciℓ(I
FA)

∣∣∣∣
}

≤
∑
i∈A∗

pi ·

√√√√√E


(
IFLi −

L∑
ℓ=1

Ciℓ(IFA)

)2


Notice that the random variable
∑L

ℓ=1Ciℓ(I
FA) has expectation

E

[
L∑

ℓ=1

Ciℓ(I
FA)

]
=EL

[
L∑

ℓ=1

E [Ciℓ(I
FA)]

]
=EL

[
L∑

ℓ=1

πi

]
=EL [Lπi] = Tλπi = IFLi

Therefore,

∑
i∈A∗

pi ·E

{
IFLi −min

{
IFLi ,

L∑
ℓ=1

Ciℓ(I
FA)

}}
≤
∑
i∈A∗

pi ·

√√√√Var

{
L∑

ℓ=1

Ciℓ(IFA)

}

=
∑
i∈A∗

pi ·

√√√√EL

[
Var

{
L∑

ℓ=1

Ciℓ(IFA)

∣∣∣∣L
]}

=
∑
i∈A∗

pi ·
√
EL [Lπi(1−πi)]

=
∑
i∈A∗

pi ·
√

Tλπi(1−πi)≤ pmax

√
Tλ ·

∑
i∈A∗

√
πi ≤ pmax

√
Tλ
√

|A∗|,
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where the last step is obtained by Cauchy-Schwartz inequality
(∑

i∈A∗
√
π
)2 ≤

(∑
i∈A∗ 1

)
·

(
∑

i∈A∗ π) = |A∗|. Therefore, Vfluid−Πstatic(I)≤ pmax

√
Tλn+cmaxn. Finally, we note that Π

∗ ≤ Vfluid

according to Lemma (6), which is introduced below. Also, Π(IFA)≥Πstatic(I
FA). Thus, Π∗−Π(IFA)≤

Vfluid −Πstatic(I
FA) =O

(√
nTλ

)
. □

B.4. Proof of Proposition 2

Define supp(I) as the support of an inventory vector I, i.e., supp(I) = {(j, k) | Ijk > 0}. We further

define C(A) as the class of inventory vectors with support S, i.e., C(A) = {I ∈NJK
+ | supp(I) =A}.

We will first show that when L̄ is sufficiently large, any inventory vector from class C(A′) for

A′ ̸=A∗, where A∗ is the optimal assortment, cannot be an optimal solution to Problem PLB. In

particular, for any I∈∪A ̸=A∗L(A), we have

z′LB = maximize
A̸=A∗,I∈C(A),I∈NJK

+

[∑
(j,k)

pj ·min
{
L̄ ·πjk(I) , Ijk

}
−
∑
(j,k)

cj · Ijk
]

≤ maximize
A ̸=A∗,I∈C(A),I∈NJK

+

[∑
(j,k)

(pj − cj) ·min
{
L̄ ·πjk(I) , Ijk

}]
≤ maximize

A ̸=A∗,I∈C(A),I∈NJK
+

[∑
(j,k)

(pj − cj) · L̄ ·πjk(I)

]
≤ L̄ ·maximize

A̸=A∗

∑
(j,k)

(pj − cj) ·P ((j, k) |A) .

Meanwhile, we consider the objective value of fluid policy IFA in Problem PLB as follows

zLB (I
FA) =

∑
(j,k)∈N

pj · L̄ ·P((j, k) |A∗)−
∑

(j,k)∈N

cj ·
[
L̄ ·P((j, k) |A∗)+

(
⌈L̄ ·P((j, k) |A∗)⌉− L̄ ·P((j, k) |A∗)

)]
≥
∑

(j,k)∈N

(pj − cj) · L̄ ·P((j, k) |A∗)−
∑

(j,k)∈N

cj = L̄Rasst(A
∗)−

∑
(j,k)∈N

cj.

Therefore, for sufficiently large L̄, we have z′LB < zLB (I
FA), which implies that the support of the

optimal solution of Problem PLB must be A∗ when L̄ is sufficiently large.

Now we shall show that IIPjk/I
FA
jk → 1 for all (j, k) ∈ A∗ when L̄ → ∞. This is equivalent to

show that IIPjk/
(
L̄ ·P((j, k) |A∗)

)
→ 1 for all (j, k) ∈ A∗. Consider a sufficiently large L̄. As IIP

returns the optimal solution to PLB, we know that IIP has support A∗. Assume there exists a pair

(j, k) such that lim inf L̄ |IIPjk/
(
L̄ ·P((j, k) |A∗)

)
− 1| > ϵ for a constant ϵ. Then, as L̄→∞, either

lim inf
{(

zLB(I
FA)− zLB(I

IP)/L̄
)}

> ϵ(pj−cj)P ((j, k) |A∗)> 0 or lim inf
{(

zLB(I
FA)− zLB(I

IP)/L̄
)}

>

ϵcjP ((j, k) |A∗)> 0 holds. In both cases, it contradicts the fact that IIP maximizes zLB(·). Therefore,

IIPjk/I
FA
jk → 1 for all (j, k)∈A∗ when L̄→∞. □

Appendix C: Comparing the Style-Size Choice Model and Nested Logit Model

To compare the style-size model with the nested logit model, we examine two variants of the nested

logit framework that incorporate the structure of apparel styles and sizes. Figure 4 illustrates these

two configurations. In the left panel, nests (or baskets) are defined by apparel styles, while in the
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right panel, nests are organized by apparel sizes. The size-basket variant (right panel) serves as

a benchmark in Section 4.3, as it includes |J |+ |K|+1 parameters, making it comparable to the

style-size choice model and the size aggregation approach. In contrast, the style-based variant (left

panel) has 2|J |+1 parameters. We will delve into the details of parameter counts for each variant

shortly. Next, we demonstrate that both variants of the nested logit model result in unrealistic

demand substitution within the context of the apparel industry. This highlights a key distinction

between the nested logit models and the style-size choice model proposed in this paper.

𝑗! ∅𝑗" 𝑗# 𝑗$ 𝑗%

𝑘! 𝑘" 𝑘#

𝑗#, 𝑘! 𝑗#, 𝑘" 𝑗#, 𝑘#

𝑘! ∅𝑘" 𝑘# 𝑘$ 𝑘%

𝑗! 𝑗" 𝑗#

𝑗!, 𝑘# 𝑗", 𝑘# 𝑗#, 𝑘#

Figure 4 Two variants of the nested logit model that encode the apparel style and size structure.

Let us first consider the variant of the nested logit model where each nest is defined with respect

to style, i.e., the model in Figure 4 (left). The model has 2|J | + 1 parameters. The first |J |

parameters correspond to the utility parameters vj for each style j ∈J . The second |J | parameters

represent the similarity parameters ηj ∈ (0,1] associated with each nest defined for j ∈J . The final

parameter, v0, captures the utility of no-purchase option. Unlike the MNL, mixed-MNL, and the

style-size choice models, the presence of he similarity parameters (ηj)j∈J prevents us from rescaling

the utility of each style relative to v0 via vj − v0 to eliminate v0 as a parameter.

Consider the following toy example . Suppose a store sells T-shirts in five sizes, K =

{XS,S,M,L,XL}, where we let k1 =XS and k5 =XL. Now, compare two assortments A1 = {(j1, k1)}

and A2 = {(j1, k1), (j1, k5)}. In assortment A2, an additional T-shirt of the same style but in size

XL is available compared to assortment A1. The choice probability (i.e., the demand) of product

(j1, k1) given assortment A1 under the nested logit model is

PNL ((j1, k1) |A1) =
(evj1 )

η1

ev0 +(evj1 )
η1 .

Now we introduce product (j1, k5) to the assortment A1, resulting assortment A2. The choice

probability of product (j1, k1) follows as

PNL ((j1, k1) |A2) =
(evj1 + evj1 )

η1

ev0 +(evj1 + evj1 )
η1 · evj1

evj1 + evj1
=

2η1 · (evj1 )η1

ev0 +2η1 · (evj1 )η1
· 1
2
.
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Since 2η1 ∈ (1,2], we have

PNL ((j1, k1) |A2) =
2η1 · (evj1 )η1

ev0 +2η1 · (evj1 )η1
· 1
2
<

2 · (evj1 )η1

ev0 +(evj1 )
η1 · 1

2
= PNL ((j1, k1) |A1) .

Therefore, it implies that, under the nested logit model, introducing a T-shirt in size XL would

reduce the demand for the size XS of the same style. However, this is unrealistic, as customers who

wear size XL T-shirts are unlikely to consider purchasing size XS.

Now, let us consider the second variant of the nested logit model, illustrated in Figure 4(right).

In this model, each size corresponds to a nest, with parameters (ηk)k∈K. Therefore, there are

|J |+ |K|+ 1 parameters. Following the same setup for apparel products and assortments in the

toy example, we have

PNL ((j1, k1) |A2) =
(evj1 )

η1

ev0 +(evj1 )
η1 +(evj1 )

η5 <
(evj1 )

η1

ev0 +(evj1 )
η1 = PNL ((j1, k1) |A1) .

Consequently, the T-shirt in size XL once again reduces the demand for the size XS T-shirt of the

same style, which is unrealistic.

Finally, it is easy to verify that in the proposed style-size choice model, we have P ((j1, k1) |A2) =

P ((j1, k1) |A1), implying the the demand of T-shirts of size XS and XL will not cannibalize each

other. This highlights the difference between the proposed model and nested logit model.

Appendix D: Additional Numerical Results on Performance of Inventory Policies

D.1. Runtime of the IP-based Policy

Table 4 reports the runtime of optimally solving the MILP (19) in each instance listed in Table 3.

Across all instances, the runtime remains under five minutes on a MacBook Pro with an Apple M2

chip. The table also shows that as α0 decreases (i.e., β0 = e−α0 increases), the runtime for optimally

solving the MILP increases. This trend arises because stronger size substitution (lower α0) allows

the firm to leverage demand spillovers across sizes to better meet customer needs. Consequently,

the inventory optimization becomes more complex, leading to longer runtimes.

D.2. Performance of the IP-based Policy under the Major-minor Size Constraint

In the following table, we report the expected profit per customer ΠBT-per(·) to the casual booties

sector for each inventory policy. All notations follow Table 3, except that in each sub-table, we

include the performance of the IP-based policy that enforces the major-minor size constraint

described in Section 5.3. We call the resulting inventory vector as IIP2.

We have the following observations from the table. First, the major-minor size constraint affects

the performance of the IP-policy more severely when β is larger, i.e., when the size substitution

is more prevalent. This is expected, since the constraint restricts how the IP can utilize the size
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β0 = 24.9% β0 = 100.0%

L̄ T L̄ T

4W 0.1 4W 0.1
8W 0.2 8W 0.4
12W 0.4 12W 172.3
16W 0.6 16W 297.1
20W 0.6 20W 71.1
24W 42.0 24W 28.0
32W 11.3 32W 156.2

Table 4 The runtime T (sec) for solving the mixed-integer program.

L̄ INV IFA IIP IIP2

4W -18.88 -18.65 0.11 0.03
8W -4.45 -3.89 0.79 0.41

12W -0.16 0.53 1.72 1.49
16W 1.30 2.09 2.49 2.44
20W 2.71 3.28 3.42 3.42
24W 3.02 3.53 3.59 3.59
32W 3.71 4.31 4.34 4.34

L̄ INV IFA IIP IIP2

4W -18.88 -18.65 0.29 0.22
8W -3.07 -2.39 2.07 0.67

12W 1.57 2.34 3.74 2.57
16W 2.50 3.23 4.13 3.52
20W 3.51 4.16 4.69 4.30
24W 3.93 4.68 5.05 4.87
32W 4.98 5.54 5.67 5.67

Table 5 Expected profit per customer of each inventory policy for a given Tλ (β0 = 24.9% in the left panel and

β0 = 100.0% in the right panel)

substitution. Meanwhile, when the number of customer visits is sufficiently large, this constraint

does not impact the performance of the IP-based policy, as we can see in the case of L̄ = 32W .

This is because the major-minor size constraint no longer alters the optimal solution of the original

integer program.

D.3. Performance on a Synthetic Setup: Don’t ignore both style and size substitutions

In this section, we consider a toy model to show that the newsvendor policy could have poor

performance as it fails to consider style substitution. Notice that in Section 5.3, the attraction of

products are low since less than 1% of customers make a purchase from the casual booties. The

resulting optimal assortment is to offer all styles there, and the difference between the newsvendor

policy and the fluid approximation is only at whether to include a safety stock. In the following

toy model, each product’ attraction is higher than the ones we considered in Section 5.3 and thus

the optimal strategy is not always to offer all styles.

Specifically, we assume that each style j ∈ J has the attraction wj ∼ U([0,2]) and price pj ∼

U([0,100]), where U is the uniform distribution, with 100% markup pricing scheme. Note that with

such markup scheme, we can isolate the performance of the newsvendor model from its safety stock

strategy. For simplicity, we set the size distribution µ as a uniform distribution. We set both |J |

and |K| to be five and set β0 = 24.9%, which is the size substitution parameter we estimated in
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Section 4. We consider the following quantity, G(I)≡ (LR∗
asst −Π(I))/ (LR∗

asst), which is an upper

bound on the optimality gap, where R∗
asst is defined in Lemma 6. The same lemma shows that

LR∗
asst is an upper bound to the inventory problem (12).

We present the performance of the three inventory policies by showing their G value in Table 6.

The results are quite consistent with what we have observed in Section 5.3 in terms of the relative

performance of the policies. Particularly, the IP-based policy has the best performance and the

fluid approximation catches up as there are more customers. In the table, we further observe that

these two policies can reach a small optimality gap, less than one percent, as the total number

of customer visits increases. Different from Section 5.3, the newsvendor policy has a much worse

performance compared to the other two policies since it fails to account for substitution between

styles. In particular, it cannot narrow the optimality gap below twenty percent even when the

other two policies can reach small gaps. This demonstrates that while it is not fatal to ignore the

size substitution as the fluid approximation, ignoring both the size and style substitutions, like the

newsvendor policy, could be catastrophic and result in poor performance if customers follow the

style-size choice model to make decisions.

L INV IFA IIP

50 37.72% 16.86% 11.04%
100 27.71% 11.20% 9.91%
200 24.64% 4.97% 3.17%
400 27.19% 1.98% 1.79%
800 19.57% 1.27% 1.21%
1600 22.14% 0.54% 0.52%

Table 6 Bound on optimality gap for each inventory policy

Appendix E: Asymptotic Performance of Fluid Policies under General Choice Models

We end this paper by discussing an extension result for the asymptotic performance of fluid-like

inventory policies under general choice models. The literature has mainly focused on choice models

that satisfy the substitutability property (Definition 1). For example, Honhon and Seshadri (2013)

show that if the underlying choice model is a ranking-based model, a fluid-like approximation solved

by a dynamic program proposed by Honhon et al. (2010) can has an O(n
√
Q) optimality gap, where

n is the number of products and Q is the total order quantity over these n products. El Housni et al.

(2021) achieve an O
(
n+

√
nLD log (nLD)

)
gap using fluid approximation and sample-average

approximation, where LD is the deterministic number of customer visits. Zhang et al. (2024)

improve the optimality gap to O(
√
nLD) by exploring the gap between the full relaxation upper

bound and an lower bound like Problem (13). Given the emerging literature on general choice



Akchen and Caro: On Size Substitution and Its Role in Assortment and Inventory Planning
47

models that do not satisfy the substitutability property, such as tree-based models (Akchen and

Mǐsić 2021, Chen and Mǐsić 2022, Chen et al. 2019) and models inspired by behavioral economics

(Maragheh et al. 2018), providing an encompassing performance guarantee can be valuable. We

state our result as follows for a general choice model and then we discuss its application to our

style-size choice model.

Proposition 3. Let P (· | ·) be any choice model over n products. Assume that pmax =maxi=1,...,n pi

and cmax =maxi=1,...,n ci are independent of L̄= Tλ and n. Let A∗ be the optimal assortment and

define πi = P(i |A∗). Consider the inventory policy I=
(
⌈L̄(πi + ϵ)⌉ · Ii∈A∗

)
i=1,...,n

, where

ϵ=
1

2
·

√√√√√ log(L̃)

L̃
·

1− 2

√
e log(L̃)

L̃
− 1

L̃

−1

with L̃ = max{L̄, e4}. Then the policy I in the stockout-based inventory problem (12) has an

O(n
√

L̄ log L̄) optimality gap and thus it is asymptotically optimal.

We prove the proposition by recognizing that the first stockout is a stopping time and quantifying

the revenue collected until the point of the first stockout through a series of concentration inequal-

ities (Vershynin 2018). Compared to the fluid approximation, the inventory policy in Proposition 3

introduces a safety stock L̄ϵ=O
(√

L̄ · log
(
L̄
))

, which prevents the stockouts from happening too

early. Asymptotically, this safety stock is negligible compared to L̄πi, making the inventory policy

in Proposition 3 converge to the fluid approximation as L̄ tends to infinity. When applying this

policy to the style-size choice model (5), we again obtain a size-substitution-invariant inventory

policy that is asymptotically optimal, although the theoretical optimality gap is larger than the

gap of the fluid approximation shown in Proposition 1. On the other hand, in contrast to Propo-

sition 1, the result in Proposition 3 is applicable to the case when the substitutability property

does not hold. One of such examples include the scenario that some customers’ utility discount

α is negative, i.e., there exists a customer type τ = (s,σ,α) such that α < 0 with nonzero weight

µτ > 0.

E.1. Proof of Proposition 3

We define [n] ≡ {1,2, . . . , n} throughout the proof. We first state two lemmas. The first lemma,

Lemma 5, concerns the first stockout time for a specifically constructed inventory vector.

Lemma 5. Assume ϵ and ϵ′ are two positive constants. Let l be an integer that satisfies l ∈ (T (λ−
ϵ′), T (λ+ ϵ′)). Let {Xℓ} be a sequence of IID multinomial random variables such that P(Xℓ =m) =

νm for m∈ 0,1, . . . ,M , where
∑M

m=0 νm = 1. For m= 1, . . . ,M , we denote Zℓ
m =

∑ℓ

i=1 I [Xi =m] as

the recurrence of outcome m up to random variable Xℓ and let Um := ⌈Tλ(νm + ϵ)⌉. We define

τ = inf{ℓ | ∃m∈ {1, . . . ,M} such that Zℓ
m ≥Um}
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as the first time that one of the Zℓ
m hits the corresponding bound Um. Then, we have

P [τ ≤ ⌊l−Tϵ′⌋]≤M · exp
(
−2 · (Tλ− 2Tϵ′ − 1) · ϵ2

)
.

Proof: Define l′ = ⌊l − Tϵ′⌋. Event {τ ≤ l′} is equivalent to event {∃m ∈

{1, . . . ,M} such that Z l′
m ≥Um}. Therefore, by union bound,

P [τ ≤ l′]≤
M∑

m=1

P
[
Z l′

m ≥Um := ⌈Tλ(νm + ϵ)⌉
]
.

On the other hand, we know that Z l′
m ∼B(l′, νm), a binomial distribution of l′ trials with νm success

rate. Therefore, by Hoeffding’s inequality,

P
[
Z l′

m ≥ ⌈Tλ(νm + ϵ)⌉
]
≤ exp

(
−2 · l′ ·

(
νm − ⌈Tλ(νm + ϵ)⌉

l′

)2
)

≤ exp

(
−2 · l′ ·

(
νm − ⌈Tλ(νm + ϵ)⌉

Tλ

)2
)

≤ exp

(
−2 · l′ ·

(
νm − Tλ(νm + ϵ)

Tλ

)2
)

≤ exp
(
−2 · (Tλ− 2Tϵ′ − 1) · ϵ2

)
.

As a result, P [τ ≤ l−Tϵ′]≤
∑M

m=1 P
[
Z l

m ≥Um

]
≤M exp (−2 · (Tλ− 2Tϵ′ − 1) · ϵ2). □

The second lemma, Lemma 6, provides an upper bound to the inventory optimization prob-

lem (12).

Lemma 6. Define R∗
asst =maxA⊆N

{∑
j∈S rj ·P (j |A)

}
as the optimal objective value of the assort-

ment optimization problem with margin rj = pj − cj. Then for any inventory vector I, its expected

profit follows P(I)≤ TλR∗
asst.

Proof: Let L be the number of customers arrived in the period [0, T ]. The expected profit is given

by

P(I) =E
[ L∑

ℓ=1

rDℓ −
∑
j∈[n]

cj · Ij
]
=

∞∑
l=0

E
[ L∑

ℓ=1

rDℓ −
∑
j∈[n]

cj · Ij
∣∣∣∣L= l

]
·P [L= l] .

In what follows, we will show that E
[∑l

ℓ=1 rDℓ −
∑

j∈[n] cj · Ij
]
≤ l ·R∗

asst for any positive integer l.

Let Z l
j =
∑l

ℓ=1 I [Dℓ = j] be the number of sales of product j up to customer l. Then

E
[( l∑

ℓ=1

rDℓ

)
−
∑
j∈[n]

cjIj

]

=E
[ l∑

ℓ=1

∑
j∈[n]

(rj − cj) · I
[
Dℓ = j

]
+

l∑
ℓ=1

∑
j∈[n]

cj · I
[
Dℓ = j

]]
−
∑
j∈[n]

cjIj
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=
l∑

ℓ=1

E
[∑

j∈[n]

(rj − cj) ·E
[
I
[
Dℓ = j

] ∣∣∣∣Aℓ

]]
+E

[∑
j∈[n]

cj ·
l∑

ℓ=1

I
[
Dℓ = j

]]
−
∑
j∈[n]

cjIj

=
l∑

ℓ=1

E
[∑

j∈[n]

(rj − cj) ·E
[
I
[
Dℓ = j

] ∣∣∣∣Aℓ

]]
−
∑
j∈[n]

E
[
cj ·
(
Ij −Z l

j

)]
.

Notice that Ij ≥Z l
j almost surely, as the sales of a product cannot be higher than its initial stock.

Also, the term
∑

j∈[n](rj − cj) · E [I [Dℓ = j] |Aℓ] =
∑

j∈[n](rj − cj) · P(j | Aℓ) is the expected profit

given assortment Aℓ. Therefore, it is less of equal to R∗
asst according to Theorem (1). Therefore,

E
[( l∑

ℓ=1

rDℓ

)
−
∑
j∈[n]

cjIj

]
≤

l∑
ℓ=1

R∗
asst = l ·R∗

asst

and the expected profit follows

P(I)≤
∞∑
ℓ=0

l ·R∗
asst ·P[L= l] =R∗

asst ·Tλ,

where the last equality follows since L is a Poisson random variable with parameter Tλ and has

expected value Tλ. □

Now, we are ready to prove Proposition 3.

Proof of Proposition 3: Define A∗ as the optimal assortment defined in Lemma 6 and R∗
asst as its

expected profit. Now we show that the inventory vector I defined in Proposition 3 is asymptotically

optimal with rate O
(
n
√
L̄ log

(
L̄
))

. We separate the discussion into the following three parts:

(a) bounding the expected revenue E
[∑L

ℓ=1 rDℓ

]
from below; (b) bounding the cost

∑
j cjIj from

above; and (c) bounding the optimality gap.

(a) Bound the expected revenue. Recall that L is the number of arrived customers in time [0, T ].

The expected revenue follows as

E

[
∞∑
ℓ=1

rDℓ · I [tℓ ≤ T ]

]
=

∞∑
l=0

E

[
L∑

ℓ=1

rDℓ

∣∣∣∣L= l

]
·P [L= l]≥

⌊T (λ+ϵ1)⌋∑
l=⌈T (λ−ϵ1)⌉

E

[
l∑

ℓ=1

rDℓ

]
·P [L= l] ,

where we will choose ϵ1 carefully later. If there exists a lower bound R̃low that is independent of l

and satisfy R̃low ≤E
[∑l

ℓ=1 rDℓ

]
for any positive integer l ∈ (T (λ− ϵ1), T (λ+ ϵ1)), then

E

[
∞∑
ℓ=1

rDℓ · I [tℓ ≤ T ]

]
≥

∑
l∈N+:l∈(T (λ−ϵ1),T (λ+ϵ1))

E

[
l∑

ℓ=1

rDℓ

]
·P [L= l]

≥
∑

l∈N+:l∈(T (λ−ϵ1),T (λ+ϵ1))

R̃low ·P [L= l]

= R̃low ·
∑

l∈N+:l∈(T (λ−ϵ1),T (λ+ϵ1))

P [L= l]
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≥ R̃low ·P
[
L∈ (T (λ− ϵ1), T (λ+ ϵ1))

]
= R̃low ·

(
1−P

[
|L−Tλ| ≥ Tϵ1

])
≥ R̃low ·

(
1− 2exp

(
− (Tϵ1)

2

2(Tλ+Tϵ1)

))
, (22)

where in the last inequality, we use the concentration inequality for the Poisson random variable

(Vershynin 2018). By choosing ϵ1 = λ ·
√

e log(L̄)/L̄, we have,

exp

(
− (Tϵ1)

2

2(Tλ+Tϵ1)

)
= exp

−1

2
· e · log(L̄)

1+
√

e·log(L̄)

L̄

≤ exp

(
−e log(L̄)

4

)
≤ exp

(
− log(L̄)

2

)
=

1√
L̄
,

where the first inequality follows since e logx≤ x whenever x≥ e. Therefore, as long as we have

the lower bound R̃low, then the expected revenue follows as

E

[
∞∑
ℓ=1

rDℓ · I [tℓ ≤ T ]

]
≥ R̃low ·

(
1− 2√

L̄

)
.

Now we will obtain the lower bound R̃low for E
[∑l

ℓ=1 rDℓ

]
for any positive integer l ∈ (T (λ−

ϵ1), T (λ+ ϵ1)). We define Zℓ
j =

∑ℓ

i=1 I [Di = j] as the number of times that product j ∈A∗ is chosen

by the first ℓ customers. We further define a random variable

τ = inf
{
ℓ | ∃ product j ∈A∗ such that Zℓ

j = ⌈L̄(πj + ϵ)⌉
}
,

which is the first customer such that after she makes the decision, one of the products in the

optimal assortment A∗ is out of stock. More importantly, τ is a stopping time. Also, it only depends

on customers’ decisions and it is independent of customers’ arrival times. Notice that for a fixed

l ∈ (T (λ− ϵ1), T (λ+ ϵ1)),

E

[
l∑

ℓ=1

rDℓ

]
≥E

[
min{⌊l−Tϵ1⌋,τ}∑

ℓ=1

rDℓ

]
.

We will use a Wald equation-like argument to calculate the right-hand side. Notice that we cannot

directly apply Wald’s equation here, as {Dℓ}ℓ∈N is not a sequence of IID random variables. Indeed,

as we discussed above, the set of available products Aℓ that customer ℓ sees is not the same for all

ℓ and thus the distribution of Dℓ is not fixed.

Let l′ = ⌊l − Tϵ1⌋. Define R̃∗
asst :=

∑
j∈A∗ rj · P(j | A∗) as the “revenue” part of the optimal

assortment A∗ (instead of profit, which doesn’t have a tilde in the notation). For a given integer

l ∈ (T (λ− ϵ1), T (λ+ ϵ1)), we have

E

min{l′,τ}∑
ℓ=1

rDℓ

=E

[
∞∑
ℓ=1

rDℓ · I [ℓ≤ l′] · I [ℓ≤ τ ]

]
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=
∞∑
ℓ=1

E
[
rDℓ · I [ℓ≤ l′] · I [ℓ≤ τ ]

]
=

∞∑
ℓ=1

E
[
E
[
I [ℓ≤ l′] · I [ℓ≤ τ ] · rDℓ

∣∣∣∣D1,D2, . . . ,Dℓ−1

]]
=

∞∑
ℓ=1

E
[
I [ℓ≤ l′] · I [ℓ≤ τ ] ·E

[
rDℓ

∣∣∣∣D1,D2, . . . ,Dℓ−1

]]
=

∞∑
ℓ=1

E
[
I [ℓ≤ l′] · I [ℓ≤ τ ] · R̃∗

asst

]
=R̃∗

asst ·E
[
min{l′, τ}

]
.

Here the first equality follows the definition. The second equality follows Fubini’s theorem as the

random variables are nonnegative. The third equality follows the towel property of expectation. The

fourth equality follows the fact that τ is a stopping time. In particular, event {ℓ≤ τ}= {ℓ−1≥ τ}c

is in the filtration defined by D1,D2, . . . ,Dℓ−1, as we can tell whether a product will out of stock

at any time after the ℓth customer makes her decision by checking the decisions of the first ℓ− 1

customers. The fifth equality follows an observation: given that no products are out of stock after

first ℓ−1 customers’ visits, the set Aℓ of available products that ℓth customer will see remains the

same as A1, which is the optimal assortment A∗, according to the construction of the inventory

decision I. Therefore, if ℓ≤ τ , then E [rDℓ |D1, . . . ,Dℓ−1] =E [rDℓ |Aℓ] =E [rDℓ |A∗] = R̃∗
asst.

Now we will further lower bound E [min{l′, τ}] for any fixed l′ = ⌊l−Tϵ1⌋ for l ∈ (T (λ−ϵ1), T (λ+

ϵ1)) by Lemma 5. Notice that

E
[
min{l′, τ}

]
=E
[
min{l′, τ} | l′ ≥ τ

]
·P [l′ ≥ τ ] +E

[
min{l′, τ} | l′ < τ

]
·P [l′ < τ ]

=E
[
τ | l′ ≥ τ

]
·P [l′ ≥ τ ] +E

[
l′ | l′ < τ

]
·P [l′ < τ ]

≥l′ ·P [l′ < τ ]

≥l′ ·
(
1− |A∗| · exp

(
−2(Tλ− 2Tϵ1 − 1) · ϵ2

))
≥l′ ·

(
1− |A∗| ·

√
1

Tλ

)

≥(Tλ− 2Tϵ1 − 1) ·

(
1− |A∗| ·

√
1

Tλ

)

=L̄ ·

(
1− 2

√
e log(L̄)

L̄
− 1

L̄

)
·

(
1− |A∗| ·

√
1

L̄

)
where the first and second equalities follow the definition, the first inequality follows as l′ is a

constant, and the second inequality follows by Lemma 5 and the construction of inventory vector

I and τ . In particular, before the hitting time happens, the consumer decision Dℓ follows Dℓ = j
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with probability P(j |A∗) = πj. The last two inequalities follow as l > T (λ− ϵ1), l
′ ≥ Tλ−2Tϵ1−1,

and ϵ= 0.5 ·
√
log(Tλ)/(Tλ− 2Tϵ1 − 1). Combining all elements, we have

E

[
l∑

ℓ=1

rDℓ

]
≥E

min{l′,τ}∑
ℓ=1

rDℓ

= R̃∗
asst ·E

[
min{l′, τ}

]

≥ R̃∗
asst ·Tλ

(
1− 2

√
e log(L̄)

L̄
− 1

L̄

)
·

(
1−n

√
1

L̄

)
:= R̃low

whenever l ∈ (T (λ− ϵ1), T (λ+ ϵ1)). Therefore, going back to Equation (22) and plugging in the

defined R̃low, we have the expected revenue bounded below as

E

[
∞∑
ℓ=1

rDℓ · I [tℓ ≤ T ]

]
≥ R̃low ·

(
1− 2√

L̄

)
≥ R̃∗

asst · L̄ ·

(
1− 2

√
e log(L̄)

L̄
− 1

L̄
−n ·

√
1

L̄
− 2√

L̄

)

(b) Bound the cost. We have
∑

j∈[n] cj · Ij ≤
∑

j∈A∗ cj · (1 + L̄(πj + ϵ)). Notice that whenever

L̄≥ e4, ϵ1 = λ ·
√

e log(L̄)/L̄≤ λ
√

e · 4/e4 ≤ 0.45 ·λ, which results in

ϵ= 0.5 ·

√√√√ log(L̄)

L̄
[
1− 2

√
e log(L̄)/L̄− 1/L̄

] ≤ 0.5√
1− 2× 0.45− exp(−4)

·
√

log(L̄)

L̄
≤ 1.8 ·

√
log(L̄)

L̄
.

Plugging the upper bound for ϵ, we have the upper bound for the total procurement cost whenever

Tλ≥ e4 as
∑

j∈[n] cj · Ij ≤ ncmax + L̄
∑

j∈A∗ cjπj +1.8ncmax

√
L̄ · log(L̄).

(c) Approximate. Following the discussion in (a) and (b), the expected profit Π(I), which is the

expected revenue subtract the cost, has a lower bound

Π(I)≥R̃∗
asst · L̄ ·

(
1− 2

√
e log(L̄)

L̄
− 1

L̄
−n ·

√
1

L̄
− 2√

L̄

)
−

(
ncmax + L̄

∑
j∈A∗

cjπj +1.8n · cmax ·
√
L̄ · log(L̄)

)

=R∗
asst · L̄−O

(
(pmax + cmax) ·n ·

√
L̄ log L̄

)
,

where we use the fact R̃∗
asst ≤ pmax and R̃∗

asst −
∑

j∈A∗ cjπj =
∑

j∈A∗(rj − cj)πj = R∗
asst. Therefore,

the inventory vector I has an optimality gap

Π∗ −Π(I)≤ L̄R∗
asst −Π(I)≤O

(
n ·
√

L̄ log L̄

)
,

where the first inequality follows Lemma 6 and the second inequality follows that both pmax and

cmax are independent of L̄. Finally, we argue that I is asymptotically optimal as follows:

Π(I)

Π∗ ≥ Π(I)

L̄R∗
asst

≥ 1− n

R∗
asst

·O

(√
log(L̄)

L̄

)
→ 1 as L̄→∞.

□


