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Abstract. Water scarcity is a growing global issue. It affects even highly developed regions like California, the world’s fifth

largest economy, where years of severe droughts interspersed with unusually wet seasons have caused societal debates over the

management of the water resources stored in the state’s extensive reservoir system. This paper presents a strategic optimization

model for the long-term, sustainable management of such a system. Introducing a new modeling paradigm based on cycles of

stochastic length, defined by the event when all reservoirs are simultaneously full, we avoid the limitations of traditional models

and obtain sustainable management policies. To address the unpredictable effect of climate change on future water supply, we

adopt a distributionally robust framework where nature chooses adverse inflow distributions. This leads to a stochastic shortest path

problem under distributional ambiguity. Using tools from stochastic dynamic programming and aggregation methods, we obtain

policy insights and overcome the curse of dimensionality typically associated with systems models. In a case study for California’s

Sacramento River Basin, we report suboptimality gaps between 3% and 15%, with our sustainable management policy reducing

average cycle shortage costs by 40% compared to the current policy, demonstrating the significant cost saving potential.

Key words: Water resource management, distributionally robust optimization, stochastic shortest path

1. Introduction

Water reservoirs are man-made structures designed to store available water resources, while dams

control their outflow. Typically, reservoirs are filled during periods with high precipitation to ensure

stable water supplies during dry seasons. This concept has been benefiting humanity for millennia

(see Fahlbusch 2009), from the famous Jawa Dam in ancient Mesopotamia to the sophisticated

reservoir systems of the Roman Empire, and the over 91,000 dams constructed across the United

States since the nineteenth century (see American Society of Civil Engineers, ASCE 2021). Today,

the competing needs of urban populations, agriculture, industry, and the environment make the

storage and distribution of water resources a contentious issue, both socially and economically.

1
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In addition, climate change has significantly increased the unpredictability of precipitation pat-

terns. These challenges call for sustainable water resource management policies, a need that is

also reflected in several United Nations Sustainable Development Goals (SDGs), especially SDG

6 (“Clean Water and Sanitation”) and SDG 12 (“Responsible Consumption and Production”).

Day-to-day reservoir management typically involves short-term decision support models based

on planning horizons ranging from a few days to the end of a season. The report of Georgakakos

et al. (2018) comprehensively details a decision support model used by the California Department

of Water Resources. Depending on the prevailing regime, the focus of short-term operations models

is either on flood protection (during wet periods) or on satisfying immediate demand subject to

detailed operational constraints (during dry periods). Focusing on a single wet year can lead to

extremely low reservoir levels if there is an extended drought. For instance, in July 2022, after a

years-long dry spell, Shasta Lake in California was at 38% capacity, the lowest point on record for

that time of the year (Chun 2022).

In contrast, sustainable management requires taking future uncertainties into account that go

beyond immediate needs and currently available resources. This requires strategic planning on a

coarser time scale, delegating intraseasonal operations management to complementary models.

Aiming at a strategic planning model raises the question of an appropriate planning horizon.

Traditional approaches face limitations: finite-horizon models require artificial terminal conditions

to avoid depleting reservoirs at the end of the planning period, and infinite-horizon models yield

solutions that depend heavily on the discount rate used for future water shortages. To address

these issues, we propose a novel modeling paradigm based on a stochastic time horizon. We define

a cycle as a period of time in which all reservoirs in the system are simultaneously full at the

beginning and at the end, but not at any intermediate time. The length of such a cycle is influenced

by releases and inflows (and, to a minor extent, evaporation losses). Inflows are uncertain, while

releases can be controlled. The objective of our model is to manage releases in such a way as

to minimize the total expected shortage costs over a cycle. This creates a non-trivial trade-off

between meeting immediate demand and shortening the expected cycle, i.e., getting the system

back to full. Further trade-offs can be incorporated by assigning higher shortage costs to prioritized

demand streams, such as drinking water. Then, immediate non-essential demand competes with

future high-priority demand.

Historical yearly inflow data exhibit significant variability, making seasonal inflow a key source

of exogenous uncertainty in our model. However, reliable probabilistic forecasts are difficult, not
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only due to relatively few available data points but especially because of climate change, see Le

et al. (2023). We address this challenge by incorporating ambiguity into our model. We introduce

an adversarial player (“nature”) to choose the worst-case inflow distribution for any given release

decision. We adopt a penalty-based distributionally robust optimization approach, which uses rel-

ative entropy to measure the deviations of the worst-case distribution from our best-guess nominal

uncertainty model. This method ensures that the policies induced by our model are robust against

climate uncertainty.

We consider a system of reservoirs that collectively satisfy demand, exemplified by California,

where most major reservoirs are located in the Sacramento River Basin in the northern part. This

system contributes in a controlled way to the Sacramento River, from which urban and ecological

demand in the Bay Area as well as agricultural demand in the southern Central Valley are supplied.

The case of California, for which we carefully assessed all details in consultation with the operat-

ing agency (White 2022), serves as a running example across the paper. However, our results are

readily applicable to any other reservoir system sharing similar characteristics.

For any such system, efficient distribution of available water resources requires a systemic per-

spective, as reflected in our model. From a computational perspective, however, stochastic dynamic

optimization models typically suffer from a curse of dimensionality. Considering all possible states

of a dynamic system of even a few reservoirs can thus be computationally intractable. To over-

come this issue, we suggest an efficiently computable heuristic based on two steps. First, we use

an aggregation approach to determine the total release amount from the system. Then, we exploit

our analytical policy insights to optimally split the total release among the individual reservoirs.

The expected costs for the aggregated system are shown to represent a lower bound for the opti-

mal (worst-case) expected costs. While the worst-case inflow distributions cannot be extracted in

closed form, we derive upper bounds on the worst-case expected shortage costs associated with

our policy, allowing for performance evaluation.

Water resources management has a tradition of research at the interface of several scientific com-

munities, generating a large body of literature. The survey of Elleuch et al. (2022) reports nearly

seven hundred publications between the year 1985 and 2021 on water management problems, clas-

sifying the related literature along several dimensions. Giuliani et al. (2021) categorize over 300

papers on prescriptive reservoir management models with respect to the applied policy design,

including a detailed analysis of 114 papers using (approximate) stochastic dynamic programming

techniques. Finite-horizon models with end-of-horizon penalties and infinite-horizon models with
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discounting (or considering average immediate costs) are identified in their review as the only two

approaches used across the existing literature. Hence, our proposed approach of using a stochastic

time horizon introduces a new modeling paradigm, enriching the existing literature.

Extreme weather events have generally led to increased awareness of climate change and

underscored the need for sustainable management of natural resources. Yet, the recent litera-

ture remains sparse in presenting innovative models for strategically optimizing the distribution

of water resources facing climate uncertainty. An exception is the work of Park and Bayraksan

(2023), who employ a scenario tree based multistage distributionally robust optimization approach

to model water distribution in the area of Tucson, Arizona. While Park and Bayraksan (2023)

also propose integrating climate uncertainty into strategic water resource management models

through distributionally robust optimization, our paper differs significantly both from a modeling

and methodological perspective. Unlike their focus on algorithmic solution techniques for scenario

tree models, our stochastic dynamic programming approach allows for finer time granularity of

yearly decisions and uncertain parameters, emphasizing policy insights and implications. More-

over, their model considers a finite horizon (the middle of the century) with discounting, whereas

we introduce a new modeling approach. Gauvin et al. (2017, 2018a,b) also apply robust optimiza-

tion techniques. However, in contrast to our strategic planning model, their models for a river

system in Western Québec address flood risk management over a natural finite horizon defined by

the freshet period.

From an inventory management perspective, the studied optimization problem can be seen as

a problem of sequentially matching random supply (under model ambiguity) into a network of

storage facilities, with known central demand. To our knowledge, such models have not been exten-

sively studied in the classical inventory management literature. While random supply issues have

been explored, for instance, in the context of distributing donated products (see, e.g., Zhang et al.

2020), water reservoir management remains a distinct dynamic resource allocation problem with

unique challenges.

The main contributions of this paper can be summarized as follows:

1. A New Strategic Model (Section 2): We present a strategic model for sustainable water

resource management across a network of reservoirs facing climate uncertainty. The model

prescribes the aggregate release from each reservoir in the system over an entire upcoming

(dry) season, given all storage levels at the beginning of the season. The strategic nature of the

model stems from its objective: we propose to optimize the expected sum of shortage costs
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over cycles of stochastic length, thereby overcoming the limitations of standard modeling

approaches. Acknowledging epistemic inflow uncertainty due to climate change, we incorpo-

rate ambiguity, optimizing expected cycle costs with respect to worst-case inflow distributions.

2. Theoretical Analysis and Policy Insights (Section 3): The proposed model is thoroughly

analyzed, deriving structural properties and policy insights. The analytical results underscore

the intuitive nature of our model. Moreover, we establish a link to the literature on stochastic

shortest path models in the sense of Bertsekas and Tsitsiklis (1991), presenting a distribution-

ally robust version for the first time (to the best of our knowledge).

3. Heuristics and Bounds (Section 4): From a computational perspective, we overcome the

curse of dimensionality using aggregation methods, suggesting a scalable heuristic together

with performance bounds.

4. Case Study (Section 5): Using real data, we apply our model to the case of the Sacramento

River Basin, the largest water resource system in California. In a comprehensive computa-

tional study, we demonstrate the reliability and robustness of our policy. Suboptimality gaps

ranging from 3% to 15% indicate that our heuristic is close to optimal. Applying historical

inflow scenarios, our policy significantly outperforms several benchmark policies. In particu-

lar, the average cycle cost is reduced by 40% compared to the policy used in practice.

In Section 6, we present our conclusions. All proofs and additional supplemental material are

provided in the Electronic Companion (EC).

2. Model Formulation

We consider a discrete-time dynamic system of N ∈ N reservoirs located in a river basin. The

capacity of reservoir i is Ci and its state, St,i ∈ [Smin
i ,Ci], describes the volume of water that is

stored in reservoir i at time t≥ 0. Minimum levels Smin
i > 0 are typically imposed for environmen-

tal reasons. Let S = [Smin
1 ,C1]× . . .× [Smin

N ,CN ] denote the state space of the system.

California’s official water year is a 12 months period starting on October 1 of the calendar year

that precedes the reference year. For instance, the water year 2000 started on Oct. 1, 1999 and

ended on Sep. 30, 2000. Each water year is assumed to consist of two seasons, namely a rainy/wet

season (October to April) and a dry season (May to September). On average, about 70% of the

yearly inflow occurs through direct precipitation during the wet season, while the inflow during

the dry season is mostly due to snow melt. Each time point t ≥ 0 in our discrete-time system

marks the beginning of a dry season, i.e., May 1 of year t . The inflow into reservoir i between
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time t and t+1 , which corresponds to the aggregate inflow over a dry season and the subsequent

rainy season, is modeled by αi ·Γt , where Γt is an independent realization of a univariate random

variable Γ representing the reference annual inflow, and αi ≥ 0 is a constant factor. Let P denote

the stationary distribution of Γ. Using a univariate source of exogenous uncertainty is motivated by

the fact that we consider a system of reservoirs belonging to a single river basin. The assumption

can be validated by observing high correlations in historical inflow data. Figure 1 illustrates such

correlations for the major reservoirs in the Sacramento River basin.

Correlation Trinity Folsom Oroville

Shasta 88% 85% 91%

Trinity 74% 82%

Folsom 98%

Figure 1 Left: Yearly inflow data (May to April of the following year) from the (starting) year 2000 to 2023. Right: Corre-

sponding correlation matrix.

Reservoir management in the two seasons follows two completely different objectives. During

the wet season, the focus is on flood protection and dam failure must be avoided by all means.

Such flood protection policies are typically implemented in practice by dynamically adjusting the

so-called top of conservation storage level. Upon reaching that level, any additional inflow is imme-

diately released. The top of conservation storage level is set high, if either the current storage level

is low, or the end of the wet season is approaching, or little precipitation is predicted for the remain-

der of the season. By the end of the wet season, the top of conservation storage level typically

reaches one hundred percent of storage capacity. As our model considers the entire wet season as a

whole without actively controlling its releases, we simplify the exogenous flood protection policy

by multiplying the (yearly) inflow αiΓ into reservoir i by a constant factor (1−βi) , such that βiαiΓ

represents the outflow from reservoir i over a wet season. This simplifying assumption reflects the
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fact that large/small release amounts are typically observed in wet seasons with large/small pre-

cipitation amounts (for example, the correlation between wet season outflows and yearly inflows

is more than 90% in our data for Shasta Lake).

To account for evaporation losses, a constant amount of stored water ei is subtracted from reser-

voir i during each time period. For ease of notation, let ξt,i := (1−βi)αiΓt−ei be the uncontrolled

net inflow into reservoir i between time t and t + 1, and let ξt = (ξt,1, . . . , ξt,N) . Let also St =

(St,1, . . . , St,N) and C = (C1, . . . ,CN) denote the state and capacity vectors respectively.

The outflow during dry seasons is the focus of our management model. Given the state St ∈ S ,

our model controls the total outflow x(St) = (x1(St), . . . , xN(St)) over an upcoming dry season.

Hence, the state update from period t to t+1 for each reservoir i is described by the equation

St+1,i =min
{
St,i + ξt,i −xi(St),Ci

}
. (1)

During each dry season, we assume a known demand D, which occurs downstream of all the

reservoirs in the system and therefore can be satisfied with water coming from any of the reser-

voirs. Such a situation is common. For the Sacramento River basin, the demand consists of the

following three main sources: (i) demand in the San Joaquin-Sacramento River Delta, including

urban consumption in the San Francisco Bay Area; (ii) agricultural demand in the Central Valley,

for which water is exported south via a system of pipes; and (iii) environmental demand, satisfying

the need from a sensitive ecosystem (e.g., salmon populations) to provide enough fresh water to

keep salinity levels low. All of these demand sources occur downstream of the reservoirs in the

system. While hydroelectric energy is produced as a consequence of releases, none of the reser-

voirs considered are primarily for hydroelectric power generation. Hence, we do not explicitly

model the corresponding energy market in this paper. However, this is not a limitation of our model

or the results. If part of the demand D cannot be satisfied, shortage costs are incurred according

to a convex, decreasing cost function c : RN
+ → R+ on outflows x(St) . The assumption that all

demand occurs downstream implies that c(x) = c(x′) holds for any release vectors x and x′ with∑N
i=1 xi =

∑N
i=1 x

′
i . However, the total demand D can be split into different streams D1, . . . ,DM

(such that
∑M

i=1Di = D), with associated shortage cost parameters reflecting their prioritization

(cf. Section 5.3.3).

All quantities St,i, xi,Ci, ei,Γt and D, are measured in acre-feet (af) or million acre-feet (maf).
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2.1. Objective function

Release decisions boil down to a tradeoff between satisfying immediate demand versus storing

water for future needs in case of little inflow. When addressing this tradeoff in a stochastic model,

a key modeling choice is the time horizon.

There does not seem to be a natural choice for a deterministic, finite planning horizon. Indeed,

any finite-horizon model will incentivize greedy decisions in the last periods, unless artificial ter-

minal conditions are imposed, in which case the decisions will be driven by those conditions.

Similarly, the decisions in an infinite-horizon model are driven by the choice of the discount factor.

The steeper the discount factor, the smaller is the incentive to conserve water resources for future

needs. Moreover, the concept of a time value of water does not exist in a similar manner as for

money. Thus, it remains unclear which discount factor to apply.

To avoid having to choose artificial terminal conditions or an arbitrary discount factor, we adopt

an alternative perspective based on stochastic cycles delimited by the event of all reservoirs being

full. A cycle of length n is defined as a (sample) path from time t0 through time tn = t0 + n, such

that St0,i =Ci and Stn−1,i+ξtn−1,i−xi(Stn−1)>Ci hold for all i= 1, . . . ,N , and for each t0 < t<

tn there exists some reservoir i such that St,i < Ci. Starting from all storage levels equaling their

capacities, a cycle thus ends as soon as all reservoirs i= 1, . . . ,N in the system are simultaneously

full again. While, for technical reasons, our definition of a cycle is based on sufficient inflow to

exceed all capacities, the cap Ci included in the state update, c.f. Equation (1), prevents the model

from reaching physically impossible storage levels strictly above capacity. The resulting cycles are

of stochastic length and the end of a cycle is denoted by the stopping time τ := min{t > 0 : St,i ≥
Ci ∀i = 1, . . . ,N} . Assuming a continuous inflow distribution ensures that τ is well defined, as

the event Stn−1,i + ξtn−1,i − xi(Stn−1) =Ci has probability zero. We introduce a virtual absorbing

state S to channel all potential realizations of inflows that cause the reservoirs to simultaneously

exceed their capacities. We refer to S as the target state, which incurs no cost and in which the

system remains once it is reached. However, note that enforcing the reservoir levels equal to the

capacity C after the target state S is reached, allows resetting the model so it can be interpreted as

a renewal process, starting a new cycle at time τ .

Finally, our objective is to minimize the expected sum of shortage costs per cycle over all feasible

release policies. For a given distribution P associated with the inflow variable Γ , the resulting

optimization problem can be summarized as follows:

v(C) :=min
x≥0

EP

[
τ∑

t=0

c(x(St))

∣∣∣∣∣S0 =C

]
(2)
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s.t. St+1,i =min{St,i + ξt,i −xi(St),Ci} ≥ Smin
i a.s. ∀i≤N,∀t≥ 0

2.2. Formulation as a stochastic shortest path problem

Using a stochastic time horizon model, in general, does not allow drawing on the rich toolkit that is

available for both standard finite and infinite horizon models. However, it can be shown that, under

mild assumptions, the model given in (2) belongs to the class of stochastic shortest path problems

introduced by Bertsekas and Tsitsiklis (1989). In particular, we use the following assumption on

the stationary inflow distribution:

Assumption 1. The distribution P of the inflow variable Γ has a continuous density function with

support (a, b)⊆R+ , such that a >maxi=1,...,N
1

(1−βi)αi
ei and b >maxi=1,...,N

1
(1−βi)αi

(Ci −Smin
i ) .

The condition on a implies that there is a positive inflow (net of evaporation) during each year.

The condition on b implies that, for any state of the system, there is a positive chance of enough

inflow during one year, such that all reservoirs reach their capacity. Given the historical data,

these conditions are both very realistic assumptions: First, evaporation losses are of a negligible

magnitude compared to inflows. Second, the inflows required to hit capacity when starting at the

minimum level for Shasta, Trinity, Folsom and Oroville, are given by 3.55, 1.97, 0.84, and 2.75

(maf), respectively. These inflows have been exceeded multiple times. For instance, from May 1,

2005 to April 30, 2006, the corresponding total inflows were about 9.24, 2.08, 5.32, and 7.52 (maf).

Assumption 1 guarantees that all policies are proper in the sense of Bertsekas and Tsitsiklis

(1989):

LEMMA 1. For any policy x that is feasible for (2), it holds that limt→∞P[St = S] = 1 .

Assumption 1 also ensures that state transition probabilities are continuous functions of the

release decisions. Given the minimum reservoir levels Smin that must be respected, the action space

in a given state is a compact subset of RN . Moreover, since the cost function c(·) is continuous, all

conditions are satisfied for the following statement to hold:

PROPOSITION 1. Under Assumption 1, the model given in (2) is a stochastic shortest path prob-

lem in the sense of Bertsekas and Tsitsiklis (1989), for which the optimal cost is the unique solution

to the dynamic programming equation

v(S) =min
{
c(x)+EP

[
v
(
min{S+ ξ−x,C}

)]
: 0≤ x≤ S−Smin

}
, (3)

with boundary condition v(C) = 0 , where the inner min operator is applied component-wise.
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2.3. Incorporating climate uncertainty via robustification

As discussed in the Introduction, the distribution P of the annual inflow Γ cannot be estimated

reliably, due to climate change. Therefore, we introduce an adversarial player (“nature”), who

selects a particularly unfavorable distribution for the state transitions, in response to any release

decision taken. We start from a nominal distribution P (a “best guess” probabilistic estimate based

on the available data), but allow nature to modify the density function p(·) in return for paying a

penalty. Let Qt =Q(St, x(St)) denote the distribution chosen by nature at time t, after observing

the state St and the release decision x(St), with an absolutely continuous density q(·) with respect

to p(·), i.e., Qt ≪ P. The more the distribution Qt deviates from P, the more ambiguity in the

distribution of Γ, and the larger the penalty to be paid. To measure the deviation of Qt from P, we

use relative entropy, also known as Kullback-Leibler (KL) divergence, defined as DKL(Qt∥P) :=∫
q(y) log(q(y)/p(y)) dy . While a variety of alternative distance concepts between probability

distributions are available (including moment-based distances, the Hellinger distance, Wasserstein

distance, etc.), KL-divergence has several favorable properties (see for instance the discussion in

Hu and Hong 2013), and is therefore widely applied in the distributionally robust control literature

(Esfahani and Kuhn 2018). Our ambiguity approach is similar to Kim and Lim (2016) who used it

to study a robust multi-armed bandit problem.

Starting from the nominal model given in (2), we consider the following robustified version:

vθ(C) =min
x≥0

sup
Q∈Q

EQ

[
τ∑

t=0

c(x(St))− θ ·DKL(Qt∥P)

∣∣∣∣∣S0 =C

]
(4)

s.t. St+1,i =min{St,i + ξt,i −xi(St),Ci} ≥ Smin
i a.s. ∀i≤N,∀t≥ 0,

where θ > 0 penalizes the ambiguity measured by DKL(Qt∥P), and Q= {Qt =Q(St, x(St)) : St ∈

S,Qt ≪ P, t≥ 0} . The smaller the value of θ, the less confidence there is in the nominal model and

the more freedom is thus given to nature. On the other hand, a larger θ tells nature not to deviate

too much from a well-trusted nominal model. Hence, we refer to θ as the confidence parameter.1

Similar to Kim and Lim (2016), the robust model in Equation (4) can be seen as a zero-sum

two-player sequential stochastic game between nature and the decision maker, with nature hav-

ing perfect information about the decision maker’s action when determining its adverse response.

This strongly adversarial version of nature considers the worst-case distribution for each candidate

1 The literature refers to θ as the ambiguity parameter, but calling it the confidence parameter is more intuitive in our context.



Caro, Glanzer, Rajaram: Sustainable Management of a Water Reservoir System Facing Climate Uncertainty
11

release decision and thereby induces particularly robust policies. The formulation in (4) can be

simplified taking advantage of the Donsker and Varadhan variational formula (see Donsker and

Varadhan 1983), as shown in the following proposition.

PROPOSITION 2. The robust model given in (4) describes a stochastic shortest path problem.

The optimal cost is the unique solution of the stochastic dynamic programming equation

vθ(S) = min
0≤x≤S−Smin

c(x)+ θ log
(
EP
[
e

vθ(min{S+ξ−x,C})
θ

])
. (5)

The optimal value function can thus be computed by a standard value iteration algorithm, which

is guaranteed to converge to a unique, finite value. Notice that the formulation (5) is based on the

nominal distribution P , but involves a nonlinear transformation of the cost-to-go function.

We note that from a decision science perspective, setting θ=−1/η allows interpreting Equation

(5) as a risk-averse decision problem of a decision maker who maximizes expected exponential

utility. In the finance literature, the quantity ρ(X) := 1
η
log(E[e−ηX ]) is referred to as the entropic

risk measure (for a risky position X). While mathematically equivalent, we emphasize the fun-

damental conceptual difference between considering (5) as a risk-averse decision problem under

uncertainty, which assumes a known probabilistic model of inherent randomness, and consider-

ing (5) as a distributionally robust decision problem, which acknowledges the unavailability of a

reliable probabilistic uncertainty model and seeks robustness across a range of possible distribu-

tions. This distinction is especially relevant when it comes to estimating the parameter θ . For our

robust approach, θ is not chosen to reflect any subjective risk preferences within a given uncer-

tainty model, but rather will be tuned to optimize out-of-sample performance. This allows to infer

robust decisions from our model, when facing ambiguous inflow distributions.

3. Model Analysis

In this section, we analyze the model presented above. We derive structural results for the special

case of a single reservoir and obtain policy insights for the general case of a system of multiple

reservoirs. Unless otherwise stated, all assumptions made in Section 2 are presumed. The shorthand

notation
∑

i is sometimes used for the sum over all reservoirs i= 1, . . . ,N .

3.1. Managing a single reservoir

While the general case of a system of N ≥ 1 reservoirs is the focus of this paper, the case N = 1

of a single reservoir is an important special case: First, it has been well-studied in the management
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literature that the implementation of centralized versus non-centralized decision-making processes

in organizations is a multi-faceted question (see, e.g., the classical book of Mintzberg 1989, Chap-

ter 11). For various organizational reasons, even reservoirs that are located in the same river basin

might be managed in an uncoordinated way. Jeuland et al. (2014) analyze the cost of such non-

cooperation in water resources systems. Second, the single reservoir problem can easily be solved

computationally by straightforward value iteration, as it does not suffer from the curse of dimen-

sionality. Exploiting this fact, in Section 4 we will apply aggregation methods that rely on the

single reservoir model to solve the multiple reservoirs case. Given its relevance both from a man-

agerial and a computational perspective, we begin the analysis of our model by examining basic

properties in the single reservoir case. To simplify the notation, we drop the i index. Our first result

characterizes the optimal value function.

PROPOSITION 3. The optimal value function vθ(S) is convex and decreasing in S ∈ [Smin,C] .

The fact that the optimal value function is decreasing in our model reflects the intuitive property

that a larger amount of stored water is associated with a smaller sum of expected shortage costs

until the end of a cycle. The majority of our numerical experiments in Section 5 will be based on a

single demand stream D together with a convex (piece-wise linear) cost function c(x) := κ · (D−∑N
i=1 xi)

+ , where (·)+ denotes the positive-part function. For a single reservoir, the convexity

property from Proposition 3 allows a full characterization of the optimal policy:

PROPOSITION 4. Let c(x) := κ · (D − x)+ . There is a state S∗ ∈ [Smin,C] such that for the

optimal policy x∗ it holds x∗(S) = 0 for all S ≤ S∗ , and x∗(S) =min{S−S∗,D} for all S > S∗ .

Given a piece-wise linear cost function, Proposition 4 shows that the optimal policy in our model

can be interpreted as a “release-down-to” policy with a target level S∗ , where the release amount

is capped by the demand. This interpretation reflects a mirror image of “order-up-to” (base stock)

policies, which represent the most famous policy type in the inventory management literature.

The following proposition shows that the optimal value function in our model also exhibits a

natural behavior with respect to the confidence parameter θ : the more confident we are in the

nominal uncertainty model (i.e., the larger θ), the smaller the expected shortage costs.

PROPOSITION 5. Given the state S of the reservoir, the optimal value function vθ(S) is a decreas-

ing function with respect to the confidence parameter θ .
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3.2. Managing a system of identical reservoirs

California’s reservoirs vary considerably in terms of capacities, water shed sizes, etc. We will study

such systems in Section 3.3 below. Before doing so, we build intuition—omitting separate proofs;

all results follow from Section 3.3—by considering the much simpler special case in which all

reservoirs in the system are identical copies of each other.

Suppose Ci = Cj, αi = αj, βi = βj, ei = ej and Smin
i = Smin

j for all i, j = 1, . . . ,N . We call a

(state of the) system balanced, if all reservoir levels coincide. If the system is balanced, then it is

(only) optimal to release an equal amount from each reservoir. This will keep the system balanced

until the terminal state is reached. If the system is not balanced, then it is optimal to first release

water only from the reservoir with the highest level, until it matches the reservoir that had the

second highest level. Then, an equal amount is released from these two reservoirs, until both match

the reservoir that had the third highest level, and so on. When all reservoir levels eventually match

the one that had the lowest initial level, a balanced state is reached. Therefore, every optimally

chosen release decision brings the system closer to a balanced state. The total release amount from

the system is equivalent to the optimal amount released from a single (aggregate) reservoir with

capacity N · Ci and inflow N · ξt,i, for any i. Hence, from a managerial perspective, a system of

identical reservoirs essentially collapses to a single reservoir, which we studied in Section 3.1.

3.3. Managing a system of non-identical reservoirs

We now turn to the general case of a system of N > 1 non-identical reservoirs that collectively

satisfy downstream demand. The additional managerial complexity then stems from deciding not

only how much demand to satisfy (as in Section 3.1), but also how much water to release from

each reservoir.

We first need the following definitions. Let δi(Si) :=
1

(1−βi)αi
(Ci − (Si − ei)) be the inflow

that would bring reservoir i to its capacity Ci from the current state Si . Hence, when δi(Si) is

lower it means that reservoir i is closer to full, i.e., it has more water. Next, we introduce a state

classification that generalizes the notion of a balanced state.

DEFINITION 1. A state S of a system of N reservoirs is called

• balanced, if δi(Si) = δj(Sj) holds for all i, j = 1, . . . ,N ;

• weakly-balanced, if for a subset I ⊆ {1, . . . ,N} the subsystem (Si : i ∈ I) is balanced (δI :=

δi(Si) = δj(Sj) for all i, j ∈ I), and Sk = Smin
k with δk(Sk)< δI holds for all k ̸∈ I .

• unbalanced, if it is neither balanced nor weakly-balanced.
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Figure 2 Illustration of Definition 1 for a system of three reservoirs with (absolute) capacities C1 = 100,C2 = 50,C3 = 80 ,

minimum levels Smin
1 = 10, Smin

2 = 15, Smin
3 = 20 , and inflow constants (1− β1)α1 = 0.5, (1− β2)α2 = 0.3, (1−

β3)α3 = 0.2 . For simplicity, evaporation losses are neglected here by setting e1 = e2 = e3 = 0 . States are indicated

by the dotted red lines, the exact levels are written above.

Figure 2 illustrates this definition, which is crucial for the remainder of the paper. The state

S(1) = (50,20,60) shown in the left plot is balanced, because for a total inflow of Γ = δ1(S
(1)
1 ) =

δ2(S
(1)
2 ) = δ3(S

(1)
3 ) = 100 all reservoirs simultaneously hit capacity. The state S(2) = (25,15,50)

in the middle is weakly-balanced, because the subsystem (S
(2)
1 , S

(2)
3 ) is balanced (δ1(S

(2)
1 ) =

δ3(S
(2)
3 ) = 150 > 116.67 = δ2(S

(2)
2 )) and S

(2)
2 = Smin

2 . The state S(3) = (60,25,60) in the right

plot is unbalanced, because δ1(S
(3)
1 ) ̸= δ2(S

(3)
2 ) ̸= δ3(S

(3)
3 ). The state S(3) would be balanced for

alternative inflow constants given by (1− β1)α1 = 0.5, (1− β2)α2 = 0.25, (1− β3)α3 = 5/16 .

Definition 1 also induces a partial ordering of states in the following sense:

DEFINITION 2. Consider two states S(1) and S(2) of a system of N reservoirs. Then S(1) is called

better balanced than S(2) , if maxi δi(S
(1)
i )−mini δi(S

(1)
i )<maxi δi(S

(2)
i )−mini δi(S

(2)
i ) .

The fact that this definition is exclusively based on the states of the two most extreme reservoir

levels (taking all specifics into account) is related to the fact that a system is no closer to reaching

the target state whether or not “intermediate” reservoir levels are balanced. Notice that for a bal-

anced state S(1), the left hand side in Definition 2 equals zero. Hence, any balanced state is better

balanced than any weakly-balanced or unbalanced state (regardless of the total amount of water

in the system). Any weakly-balanced state S(2) is better balanced than any unbalanced state S(3)

with
∑

iS
(3)
i =

∑
iS

(2)
i . If

∑
iS

(3)
i >

∑
iS

(2)
i , this relation cannot be guaranteed, e.g., consider

S(3) = (49,20,61) vs. S(2) in the middle plot of Figure 2 as a counterexample.

Our goal now is to characterize the optimal release policy. The following proposition helps build

some intuition.
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PROPOSITION 6. If for two state vectors S(1) and S(2) it holds almost everywhere that

N∑
i=1

min
{
Ci, S

(1)
i + ξi

}
≥

N∑
i=1

min
{
Ci, S

(2)
i + ξi

}
, (6)

then vθ(S
(1))≤ vθ(S

(2)) . If strict inequality holds in (6) with positive probability, then vθ(S
(1))<

vθ(S
(2)) .

The key insight of Proposition 6 is that the value of a given (pre- or post-decision) state S(1), i.e.,

its associated expected costs, is smaller than the value of another state S(2), if the system in state

S(1) can hold more water than the system in state S(2), irrespective of the realized inflow over the

next year. A direct corollary of Proposition 6 shows the desirability of reaching a balanced state,

or if that is not possible, then a weakly balanced state.

COROLLARY 1. Let the state S of a system be given, and let vθ(x,S) := c(x) +

θ log
(
E
[
e

vθ(min{C,S+ξ−x})
θ

])
. Consider two feasible release decision vectors x and x∗ with∑N

i=1 xi =
∑N

i=1 x
∗
i . If (i) S − x∗ is balanced, or (ii) S − x∗ is weakly balanced and S − x is

unbalanced, then vθ(x
∗, S)≤ vθ(x,S).

Corollary 1 implies that for any system of reservoirs, a release decision that turns them (weakly)

balanced is better than any other decision releasing the same total amount. Section EC.1.1 in the

appendix provides a few additional preliminary results. In particular, Lemma EC.2 shows that if a

system is balanced at the beginning of a dry season, then a release decision vector x∗ preserving

this property is conditionally optimal, given the total amount of water to be released. The fol-

lowing proposition is our main result and it characterizes an optimal decision vector as a direct

consequence of these insights.

PROPOSITION 7. Consider a system of N reservoirs in state S and let the optimal total release

X∗ for S be given. Suppose x∗ is feasible and satisfies the following conditions:

(i)
∑N

i=1 x
∗
i =X∗ ;

(ii) there is an index set I ⊆ {1, . . . ,N} with δi(Si)< δj(Sj) for all i∈ I, j ̸∈ I , such that

• x∗
j = 0 for all j ̸∈ I

• {Si−x∗
i : i∈ I} is balanced, or {Si−x∗

i : i∈ I} is weakly balanced and there is no x≥ 0

with
∑N

i=1 xi =X∗ and xj = 0 for all j ̸∈ I such that {Si −xi : i∈ I} is balanced;

(iii) there is no other vector x′ satisfying (i) and (ii) for an index set I ⊊ I ′;

Then x∗ is an optimal release vector.
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Intuitively, Proposition 7 shows that an optimal decision is guided by the principle of splitting

the total release among the individual reservoirs in such a way that as little water as possible will

have to be spilled (i.e., wasted) over all inflow scenarios. This is ultimately achieved by reaching

a balanced post-decision state. Part (ii) of Proposition 7 also indicates that it is always optimal to

start releasing water from those reservoirs that are closer to full, i.e., with a lower δi(Si).

To illustrate the proposition, consider the pre-decision state S(3) = (60,25,60) given in the

right plot of Figure 2, from which a total amount of X∗ = 30 shall be released. Then, by Propo-

sition 7, the split x∗ = (17.5,9.5,3) is optimal, as the post-decision state S(3) − x∗ is balanced

(δ1(60 − 17.5) = δ2(25 − 9.5) = δ3(60 − 3) = 115). However, in case of little total release, an

unbalanced pre-decision state can also result in a better balanced but still unbalanced post-decision

state. For instance, if X∗ = 10 in the above example, then x∗ = (6.875,3.125,0) is optimal

according to Proposition 7 (I = {1,2}, {S(3)
i − x∗

i : i ∈ I} is balanced), even though the post-

decision state S(3) − x∗ is unbalanced. On the other hand, even for large inflow Γ, reaching only

a weakly-balanced state can be optimal if a balanced post-decision state cannot be achieved due

to the different minimum levels. Continuing with the same example, splitting X∗ = 31.67 as x∗ =

(55/3,10,10/3) is optimal and results in a balanced state with S
(3)
2 − x∗

2 = Smin
2 . Hence, for any

X∗ > 31.67 a feasible balanced post-decision state cannot be reached. If, for example, X∗ = 40,

then the split x∗ = (170/7,10,40/7) is optimal according to Proposition 7 (resulting in a weakly-

balanced post-decision state).

After releases have been made, a system in a balanced post-decision state will remain balanced

(up to evaporation losses) as inflow occurs. If in a weakly-balanced post-decision state, inflow

either results in reaching the terminal state, or in reaching an unbalanced state with a subset of

reservoirs remaining balanced (up to evaporation losses) while others are no longer at their min-

imum. For instance, let the post-decision state be S(2) given in the middle plot of Figure 2 and

let Γ = 60. Then, the resulting state S(2) + ξ = (55,33,62) is unbalanced, with the first and third

reservoir remaining balanced, but the second one no longer at its minimum. Finally, if at least

one reservoir reaches its capacity, inflow into an unbalanced system can make it better balanced.

For example, consider S(3) as the post-decision state and let Γ = 90 . Then, the first and second

reservoir reach their capacities, but the third one does not. Nevertheless, the system becomes better

balanced than before, as maxi δi −mini δi is reduced from 20 to 10. These concepts will be key in

developing our bounds and heuristic for problem (5), which is described next.
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4. Computational Solution

In principle, the dynamic programming formulation (5) of our model allows applying value itera-

tion to determine the optimal value function. However, even for a system of only a few reservoirs

this is computationally infeasible due to the number of states growing exponentially with respect

to the number of reservoirs in the system.

We now deal with this curse of dimensionality in three steps. First, we use an aggregation

approach to establish a lower bound for the optimal costs. Combining the optimal releases for the

resulting aggregate model with the policy insights from Section 3.3, we then propose a heuristic

release policy for the multiple reservoirs case. In a third step, we discuss the policy evaluation

problem, which requires the development of an upper bound on the (worst-case) expected costs

associated with the heuristic.

4.1. A lower bound for the optimal expected costs

Consider a system of two reservoirs, a larger one and a smaller one. Suppose the smaller one

gets a large amount of inflow, which exceeds its storage capacity, but the larger one does not get

a sufficient amount to reach its capacity. Then, the system does not reach its target state and a

substantial amount of valuable inflow cannot be stored for the future, but must be spilled from the

smaller reservoir. If, instead, the system consisted of a single reservoir, which has the aggregate

capacity and receives the aggregate inflow of the two individual reservoirs, then no inflow would

need to be wasted. The aggregate reservoir is closer to its terminal state than the corresponding

two reservoirs system and has more water to satisfy future demand. Due to this pooling effect, the

expected cycle costs associated with the aggregate reservoir would be smaller. The following result

formalizes this intuition for a general system:

PROPOSITION 8. Consider a system of N reservoirs, as modeled in Section 2. Construct a (vir-

tual) system consisting of a single reservoir, with aggregate capacity C(1) =
∑

iCi , minimum level

S
(1)
min =

∑
iS

min
i , and uncontrolled net inflow ξ(1) =

∑
i ξi . The same (downstream shortage) cost

function c(X), where X denotes the total upstream release, applies to both systems. Denote by

v
(1)
θ and v

(N)
θ the optimal value functions corresponding to the aggregate reservoir and the N -

reservoirs system, respectively. Then, it holds for any state S(N) of the system of N reservoirs, that

v
(1)
θ

(∑
iS

(N)
i

)
≤ v

(N)
θ

(
S(N)

)
. If S(N) is unbalanced, strict inequality holds.
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Proposition 8 shows that properly aggregating a system of reservoirs to a single, virtual reservoir

allows to determine a lower bound for the optimal expected cycle costs of the system. The aggre-

gated problem does not suffer from the curse of dimensionality because it is a single reservoir,

c.f. Section 3.1, so it is computationally feasible to compute the lower bound by standard value

iteration.

When, relative to their capacities, some reservoirs in the system receive substantially more

inflow than others, then the amount of total usable inflow into the system (i.e., inflow that does not

need to be spilled immediately) can be much larger for the virtual aggregated reservoir. This can

lead to the bound of Proposition 8 being loose. However, the constructed overly generous inflow

into the aggregate reservoir can be restricted, while still entailing a lower bound. See EC.1.2 in the

appendix for details on the construction of a tighter lower bound following this idea.

4.2. Release Heuristic

Our proposed policy x(·) involves two steps. First, the total amount to be released from the system,

X(S(N)), is determined. Second, the amount xi(S
(N))≥ 0 released from each reservoir i is decided

such that
∑

i xi(S
(N)) =X(S(N)) .

To determine X(S(N)) , we use the aggregation approach of Section 4.1, incorporating the refine-

ment of EC.1.2, and set X(S(N)) =X(1)(
∑

iS
(N)
i ) . In general, X(1)(

∑
iS

(N)
i ) does not coincide

with the optimal total release X∗(S(N)) , which makes this policy a heuristic. Once X(1)(
∑

iS
(N)
i )

has been determined, it can be split among the individual reservoirs in an optimal way, based on

Proposition 7. Specifically, the split x(·) aims for a balanced post-decision state, which requires

sufficient total release X(1)(
∑

iS
(N)
i ) and feasibility with respect to the minimum levels. If a bal-

anced state is not feasible, a weakly-balanced post-decision state is constructed. In case of little

total release, at least a subsystem of reservoirs ends up in a (weakly-)balanced post-decision state.

As an example, consider the system illustrated in the left plot of Figure 2. Suppose a total

amount of X = 40 shall be released from the system in state S(1) = (50,20,60). To keep the system

balanced, X would need to be split into x∗
1 = 20, x∗

2 = 12 , and x∗
3 = 8 . However, this is infeasible

due to Smin
2 = 15 . Therefore, the optimal split can be constructed by setting x∗

2 = 5 first (such that

S
(1)
2 − x∗

2 = Smin
2 ) and then splitting the remaining release amount of 35 in such a way that the

subsystem (S
(1)
1 −x∗

1, S
(1)
3 −x∗

3) is balanced. This is achieved by setting x∗
1 = 25 and x∗

3 = 10 . The

resulting state is the weakly-balanced state S(2) illustrated in the middle plot of Figure 2.
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4.3. Policy Evaluation

For standard stochastic models, straightforward Monte-Carlo simulation is typically used to esti-

mate the expected costs associated with a given policy. For our distributionally robust model, how-

ever, this would require to simulate from the worst-case distributions Q∗
t , which are not available

in closed form. The policy evaluation problem, given by

vθ(x,C) :=max
Q∈Q

EQ

[
τ∑

t=0

c(x(St))− θ ·DKL(Qt∥P)

∣∣∣∣∣S0 =C

]
, (7)

therefore requires the construction of a computable upper bound on the worst-case expected costs,

where the worst-case refers to the inflow distribution.

Constructing such an upper bound for a maximization problem over probability distributions is

challenging. Our approach exploits the structure of the heuristic policy. The idea in developing this

upper bound is similar to the one used in EC.1.2. However, conversely to the most favorable state

in the case of a lower bound, our upper bound is based on the least favorable state for a given

total amount of water S(1) stored in the system. Constructing the least favorable state requires

constructing the most unbalanced state that can be reached. Considering the structure of our release

policy, when starting at the beginning of a cycle, the system typically remains in a balanced state

(up to evaporation losses) for some time. An unbalanced state can then be reached (for the first

time) only as a consequence of inflow, after releases have led to a weakly-balanced state right

before. Subsequent releases and inflows will then make the system better balanced. Hence, given

S(1) , the corresponding most unbalanced state S with
∑

iSi = S(1) would be given by a state

whose preceding post-decision state was all reservoirs being at their minimum levels. If such a state

S is not feasible (due to the different capacities), it can be adjusted accordingly. Section EC.1.3

details the construction.

PROPOSITION 9. Consider the setting of Proposition 8, but let the state update for the aggre-

gated problem be given by S
(1)
t+1 = min

{
C(1), S

(1)
t +

∑
imin

{
ξt,i,Ci − Š

(N)
i (S

(1)
t )
}
−X(S

(1)
t )
}
,

where Š(N)
i (S

(1)
t ) denotes the i-th component of the least favorable state Š(N) with

∑
i Š

(N)
i = S(1) .

Fix the policy x(·) for the N -reservoirs setting as the one suggested in Section 4.2, and the corre-

sponding policy X(·) for the aggregated problem. Then, vθ(x,C)≤ v̌
(1)
θ (X,C) , where v̌

(1)
θ (X,C)

is part of the unique solution of the fix point equations (for all S(1) = s)

v̌
(1)
θ (X,s) = c(X(s))+ θ log

(
E
[
e

v̌
(1)
θ

(X,min{C(1),s+
∑

i min{ξt,i,Ci−Š
(N)
i

(s)}−X(s)})
θ

])
. (8)
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We also developed an alternative upper bound based on information relaxation which is not

limited to the policy suggested in Section 4.2, but can be applied to any feasible policy. The details

are provided in EC.1.4. However, in the numerical study discussed next, the tailored upper bound

in Proposition 9 turned out to be tighter.

5. Case Study: Sacramento River Basin

We now apply the above model to the case of the Sacramento River Basin, the largest water shed

in California. This basin consists of a complex system of natural rivers and man-made or regulated

reservoirs. The largest reservoirs, in order of size, are Shasta Lake, Lake Oroville, Trinity Lake,

and Folsom Lake. Representing the Northern California System of major reservoirs by these four

facilities is in line with Georgakakos and Georgakakos (2007). The reservoir outflows controlled

by dams eventually contribute to the Sacramento River, and they are ultimately responsible for

the river flow. Shasta Dam, Trinity Dam and Folsom Dam are part of the federal Central Valley

Project and are operated by the U.S. Bureau of Reclamation (USBR), while Oroville Dam is part of

the California State Water Project and operated by the California Department of Water Resources.

Hence, we restrict the system that we study to Shasta, Trinity, and Folsom. The details of this study

are based on conversations with a USBR representative (White 2022).

All data that we use are publicly available through the website of the California Data Exchange

Center, managed by the California Department of Water Resources. We have queried daily data for

the period from May 1, 2000 to April 30, 2024.

The capacities of Shasta, Trinity, and Folsom Lake are C1 = 4,552,000 , C2 = 2,447,650 , and

C3 = 976,000 acre-feet (af), respectively. The minimum levels imposed have varied significantly

over time, according to White (2022). We use values of Smin
1 = 1,002,000 , Smin

2 = 478,423 , and

Smin
3 = 136,980 (af), corresponding to the lowest levels observed in the data. These values also

seem roughly compatible with the estimated total deadpool (i.e., volume of inaccessible water) in

California’s reservoirs of 7 million acre-feet (maf), as used in Stanton and Fitzgerald (2011).

To model the nominal inflow uncertainty, we let Γ denote the inflow into Shasta Lake (from

May 1 to April 30 of the following year). We estimate from the data the inflow constants α1 =

1.0, α2 = 0.2259, and α3 = 0.4867 for Shasta, Trinity, and Folsom, respectively. Section EC.1.6

details the estimation of αi . Shasta Lake serves as the reference reservoir due to its size and the

inflow correlations with Trinity Lake and Folsom Lake, which are both larger than the correlation

between Trinity and Folsom (see Figure 1). Notice that Trinity Lake has a relatively large capacity
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compared to its catchment area, receiving only about 22% of Shasta’s inflow and less than 50%

of the inflow into the much smaller Folsom Lake. Our estimate of the distribution P of Γ is based

on the gamma distribution, which is widely used in the hydrology literature as a probabilistic

precipitation model (see, e.g., the discussion in Martinez-Villalobos and Neelin 2019 or Murata

et al. 2020). In particular, we fit a 2-gamma-mixture model to avoid oversmoothing and account

for the chance of very wet years in a realistic manner. Figure 3 illustrates the fitted density function

for our nominal uncertainty model P alongside historical inflow data for Shasta Lake.

Figure 3 Density function of a 2-gamma-mixture model (red line), fitted to historical yearly (May to April in the following

year) inflow data into Shasta Lake, from the (starting) year 2000 to 2023. The inflow data are illustrated by the blue

histogram (with normalized counts to reflect probabilities).

To estimate the evaporation losses ei , we use averages over yearly-aggregated data, resulting

in e1 = 91,335 , e2 = 38,583 , and e3 = 33,049 (af). The outflow constants βi , which represent the

percentage of inflow released over the wet season, are estimated as β1 = 0.4438, β2 = 0.3489 , and

β3 = 0.5105 , following the procedure outlined in EC.1.7.

For the unit shortage cost parameter, we choose a value of κ = 800 ($/af), based on Park and

Bayraksan (2023), where a liquid market supplying water at a constant exogenous price of 800

$/af is assumed. This value is also reasonable for the present application, considering that the

average Nasdaq Veles California Water Index (NQH2O) price over the last three years in the data

(05/01/2021 – 04/30/2024) was slightly above 700 ($/af). The NQH20 index tracks the spot water

price in California, priced at the source excluding any conveyance costs and losses. A surcharge is

appropriate when estimating the unit shortage cost at the location where demand occurs.

Finally, we specify the total demand during the dry season. We consider a single demand stream

and use the average outflow over all dry seasons in the data as a proxy for the demand, resulting in
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a baseline value of D= 4,481,756 (af) with c(x) := κ · (D−
∑N

i=1 xi)
+ . In Section 5.3 we analyze

the sensitivity with respect to D and we consider the case with two demand streams.

Across all our experiments, we use a discretization of 100 points for the feasible storage levels

of Shasta Lake (from Smin
1 to C1) and apply the resulting stepsize to discretize the storage levels of

all other reservoirs. State updates are then rounded to this grid.

5.1. Calibration of the confidence parameter θ

For practical application, the value of the confidence parameter θ needs to be fixed before our robust

policy can be implemented. The motivation for adopting a distributionally robust optimization

framework is a given mistrust in the nominal uncertainty model P to accurately reflect the true

uncertainty. Given the prohibitive costs and time required to tune θ in the field, it is practical to

tune it in a simulator to ensure good out-of-sample performance of our robust policy. To achieve

this, we follow a common approach in the literature (see, e.g., Kim and Lim 2016, Bertsimas et al.

2018, Esfahani and Kuhn 2018) by adapting a form of K-fold cross-validation from the statistical

learning literature (see the book of Hastie et al. 2009) to our prescriptive setting.

To generate a sufficiently large number of (hypothetical) yearly inflow data, we first aggregate

the daily inflow data on a monthly basis and label the resulting monthly data as either wet or dry.

Bootstrapping monthly data instead of daily data allows us to account for the serial correlation

observed in daily data (i.e., a rainy day is more likely to follow a rainy day). For the labeling,

we rely on the official water year classification provided by the California Department of Water

Resources, summarizing “Wet” and “Above normal” as wet, and “Below normal”, “Dry” and “Crit-

ical” as dry. The data then correspond to roughly one-third wet years and two-thirds dry years.

This 1:2 ratio is also reflected in our generated yearly inflows. To generate a wet year, we sam-

ple the inflow for, say, January only from those January months in the data labeled as wet (each

month contained in a wet water year is labeled as wet). Summing up monthly inflows from May

to the following April, each sampled in this way, then gives a simulated wet year’s inflow. This

bootstrapping approach allows generating an arbitrary number of hypothetical yearly inflows.

The details of the cross-validation algorithm are provided in EC.1.5. The algorithm requires a

few hyperparameters, and we choose values (K = 20, nK = 30 and L = 1000) to obtain numer-

ically stable results. The output for candidate values of θ ∈ {1000,2000,3000,4000,5000,6000}

(and a fine grid for θ < 1000) is shown in Figure 4.
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Figure 4 Results of the calibration algorithm for the confidence parameter θ . Left: Average out-of-sample costs (in $100M) for

a wide range of θ values. Right: Zoomed in to the range θ ∈ [1000,5000] .

The left plot in Figure 4 shows that average costs increase sharply as θ decreases below a value

of θ = 1000 . For θ ≥ 6000 , the simulation error would exceed the observed effect of increasing

θ . Small levels of θ lead to overly conservative policies, which satisfy only a small portion of

the demand. While this results in short cycles, the high costs within the cycles dominate, causing

poor performance. Conversely, for large θ values the robust model approximates the nominal or

ambiguity-neglecting model that fully relies on the nominal inflow distribution P . The right plot

in Figure 4 shows that θ∗ = 3000 minimizes the out-of-sample cost.

The confidence parameter θ serves to balance (expected) shortage costs, expressed in dollars,

and the deviation of the worst-case inflow distribution from the nominal model, as measured

by KL-divergence. If KL-divergence is based on the natural logarithm, the appropriate unit of

measurement is the natural unit of information (symbol: nat), according to the International Sys-

tem of Quantities defined by the ISO/IEC 80000–13:2008 standard (see, e.g., the discussion in

Stratonovich 2020, p. 4). Thus, for each nat of divergence from the nominal inflow distribution P,

a penalty of $θ is incurred in our model. Notice that the calibrated θ value depends on the shortage

cost function (and, implicitly, the demand), reflecting that it plays a regularization role.

5.2. Benchmark study

Recall from Section 2.1 that a cycle is defined as a pair of years in which all reservoirs are consid-

ered full on May 1, without this event occurring in any intermediate year. Based on this definition,

the last completed cycle in the data spans the period from 2006 to 2019: on May 1, 2006, Shasta,

Trinity, and Folsom were at 98%, 99%, and 95% of their capacities, respectively. These levels were

reached or exceeded again (within a tolerance of one percentage point) for the first time on May 1,

2019 (98%, 98%, 96%). We use this period to back-test our model and policy.
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We assume that all reservoirs are full at the beginning of the cycle. Then, we calculate the

changes in storage levels from the real data (reflecting yearly inflows, outflows, and evaporation

losses) for this 13-year period, but replace the observed releases during the dry seasons with the

releases prescribed by our policy proposed in Section 4.2. This allows us to benchmark the hypo-

thetical performance of our robust policy (x(θ)) against the policy that has been applied in practice

(henceforth referred to as the “current policy” x(curr)). For our robust policy, we fix θ= 3000 ($/nat)

based on the above calibration study. To analyze the gain from robustness, we also consider the

policy x(P) that neglects ambiguity by only considering the shortage cost in our model. As addi-

tional benchmarks, we include the most conservative policy x(0) ≡ 0 (“no release”), and the most

myopic policy x(D) (“satisfy demand”) that always satisfies 100% of the demand if feasible, or the

maximum feasible amount otherwise: x(D)(S) =min{D,
∑N

i=1(Si−Smin
i )} .

To assess the “in-model” performance of x(θ), we compute the relative gap (1−LB/UB) between

the lower bound (“LB”) on the optimal (worst-case) expected costs from EC.1.2; and the upper

bound from Section 4.3 (“UB”) on the worst-case expected costs, when releases during the dry

season follow our robust policy. We observe a 14.72% gap. This means that the worst-case expected

cycle costs associated with the optimal policy amount to more than 85.28% of the costs associated

with our robust policy, suggesting that the latter is relatively close to optimal.

The plots in Figure 5 illustrate the evolution of relative storage levels as a percentage of reservoir

capacity, when releases are made according to the current policy versus our robust policy. Mini-

mum levels and starting levels, where the latter also represent the target levels to complete a cycle,

are indicated by horizontal lines. The plots track the storage levels at the beginning of each dry

season and wet season. At each beginning of a dry season (May 1), which are marked by dashed

vertical lines, it is assessed whether or not a cycle is complete. Completed cycles are indicated by

asterisks on the horizontal x-axis.

Comparing the two plots, it is unsurprising to observe significantly higher storage levels when

releases follow our robust policy (lower plot). However, it is noteworthy that the current policy

(upper plot) seems to keep relative storage levels much closer among the different reservoirs than

our policy does. This discrepancy is intentional for our policy, as it bases release decisions not only

on the size of a reservoir but also on its expected inflow. In particular, Folsom Lake has a much

larger catchment area relative to its capacity compared to the other reservoirs. For instance, recall

from above that Trinity Lake has more than 2.5 times the capacity of Folsom Lake, but on average

receives only less than 50% of its inflow. Aiming at filling all reservoirs simultaneously, our policy
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Figure 5 Back-testing results (2006–2019): Evolution of relative storage levels (w.r.t. reservoir capacity), observed at the begin-

ning of each dry season (May 1, dashed vertical lines) and wet season (Oct 1), when releases follow the current policy

(upper) versus our robust policy (lower).

therefore prioritizes using water from Folsom Lake to satisfy downstream demand. Indeed, we

observed that our policy always exhausted the entire ex-ante maximum feasible release amount

from Folsom Lake over any dry season. In all scenarios in which the other two reservoirs did not

reach their capacity, it was hence expected to observe the lowest relative storage level for Folsom

Lake. The lower plot illustrates that this strategy generally worked well, with one exception in

2015, when both Shasta and Trinity reached their capacities but Folsom did not. However, the

robust policy was able to keep Folsom above 35% of its capacity the following summer, whereas

it hit the minimum level under the current policy (and so did Trinity).
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The costs of a cycle are given by the sum of yearly shortage costs over the cycle. The lower plot

in Figure 5 shows that eight cycles are completed for our robust policy x(θ) over the evaluation

period. The average costs of these cycles amount to 15.80 ($100M). In comparison, the total cost

over the single cycle that is completed when releases are made according to the current policy

x(curr) is 26.18 ($100M). Thus, the average cycle cost associated with x(θ) is about 40% less than

the cost associated with x(curr). When neglecting ambiguity, i.e., for x(P), higher releases would lead

to fewer completed cycles (six in total) with an average cost of 17.62 ($100M). In other words, the

benefit of robustness, i.e. implementing x(θ) instead of x(P), amounts to a 10% cost reduction.

For x(0), an analogous plot to Figure 5 would only show a trivial picture, as a cycle is completed

after every year. The average cycle cost for x(0) thus equals the yearly shortage costs of κ ·D =

35.85 ($100M). Hence, compared to x(0), our robust policy would reduce costs by about 56% . The

plot for the policy that always tries to satisfy total demand (x(D)) is also omitted because it has a

pattern very similar to the current policy, with one (important) difference: for x(D) a cycle is not

completed on May 1, 2019 (or afterward). The total cost over the evaluation period when releasing

according to x(D) is 30.69 ($100M). Therefore, compared to x(D), our robust policy would reduce

costs by approximately 48.5% . Note that x(curr) has an inherent informational advantage over the

robust policy x(θ) and all other policies considered in our model because the releases implemented

by x(curr) were determined (in reality) gradually over the dry season, whereas in the model the

release for the entire dry season must be decided at once on May 1. Hence, the performance esti-

mates with respect to x(curr) are arguably conservative.

To summarize, when exposed to historical inflow scenarios from the evaluation period, our pol-

icy outperforms current practice in terms of average cycle costs. It also outperforms three other sen-

sible benchmark policies. This analysis highlights the key trade-off that drives our policy: to keep

expected cycle costs low, it is neither advisable to act extremely cautiously (saving all available

water for the future), nor to act myopically (blindly satisfying immediate demand). The proposed

policy balances this trade-off while being robust to climate uncertainty.

5.3. Sensitivity analysis and robustness checks

This subsection tests our main assumptions and estimated parameter values.

5.3.1. Different demand levels True (downstream) demand cannot be directly observed from

the data, which is a common issue in various business contexts. The previous selection of the



Caro, Glanzer, Rajaram: Sustainable Management of a Water Reservoir System Facing Climate Uncertainty
27

demand parameter D was based on average historical releases. Given that only censored data is

available, we now test the sensitivity of our results under higher demand levels.

Table 1 shows the results of this analysis. The first column lists the tested demand levels D ,

relative to the baseline value D0 = 4,481,756 (af) used in Section 5.2. The range of values consid-

ered corresponds approximately to two times the standard deviation in the historical water release

data. The second column shows the corresponding confidence parameter θ , as determined by our

calibration algorithm (c.f. Section 5.1). Columns 3–5 present the gaps between the performance

bounds from Section EC.1.2 (LB) and Section 4.3 (UB). The remaining columns report the results

for the actual inflows from 2006 to 2019, comparing our policy (including and neglecting ambi-

guity) to the no-release benchmark x(0) and the current policy x(curr). We omit the results for the

“satisfy demand” policy x(D) since a cycle would not be completed on May 1, 2019, making it

difficult to compare to the other policies.

D θ∗ LB UB Gap
Cycles Avg. Cycle Cost Cost Reduction

x(θ) x(P) x(θ) vs. x(P) vs. x(0) vs. x(curr)

100% 3000 12.91 15.14 14.7% 8 6 15.80 -10% -56% -40%

110% 3000 18.02 20.89 13.8% 9 8 20.27 -6% -49% -64%

120% 4000 22.27 24.01 7.2% 10 9 24.44 -3% -43% -74%

130% 4000 26.71 28.25 5.4% 10 10 30.40 +9% -35% -77%

140% 8000 30.11 31.08 3.1% 10 10 35.07 +5% -30% -80%

Table 1 Sensitivity analysis with respect to the downstream demand parameter D (given relative to D0). All values for LB,

UB, and average cycle costs are given in $100M, θ∗ is measured in $/nat.

In Table 1, we first observe that the calibrated confidence parameter θ∗ increases with the

demand D . This is not surprising given that larger demand levels lead to higher costs, and θ reg-

ularizes immediate shortage costs against penalties for deviating from the nominal distribution.

However, the variation in θ∗ across the analyzed demand levels is relatively small, especially up

to 130% of the baseline level, which indicates that the value of θ∗ calibrated in Section 5.1 is

relatively stable with respect to the demand level.

For all tested demand levels, we observe suboptimality gaps between 3% and 15%. This observa-

tion is consistent across a wide range of demand values, which is further evidence that the proposed
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robust policy is close to optimal. Indeed, the 14.7% gap observed in Section 5.2 would decrease if

the true demand level D turned out to be higher.

The results using the actual inflows from 2006 to 2019 are favorable for the robust policy x(θ) as

well. First, note that the ambiguity-neglecting policy x(P) is expected to perform well when tested

using the historical sample path. This is by construction of the x(P) policy, which only considers

the cycle shortage cost, and because the data used to estimate the nominal distribution P contains

the inflows from 2006 to 2019. Hence, it is quite remarkable that x(θ) outperforms x(P) for demand

levels up to 120% of the baseline value D0, as shown in Table 1. The better performance of the

robust policy x(θ) is because it completes more cycles than the ambiguity-neglecting policy x(P),

while keeping yearly shortage costs relatively low. For larger values of D, x(P) performs better

than x(θ) (as expected) because both policies complete an equal number of cycles and x(θ) releases

less water leading to higher shortage costs, but these scenarios represent severe cases of demand

censoring (30% or more), which are less likely.

For the no-release policy x(0), a cycle was completed after each year (13 in total), with average

costs growing linearly with demand. The smaller number of completed cycles but larger release

amounts observed for the robust policy x(θ) are associated with significantly lower average cycle

costs. Finally, compared to the current policy x(curr), the cost reduction of the robust policy is even

more significant than initially suggested in Section 5.2.

5.3.2. Uncertain demand The above sensitivity analysis assumes a true constant demand

level, known at the time of policy design and applied across all years in the evaluation period. We

now examine the situation when only expected demand is known a priori, but actual demand is

sampled over the evaluation period. The goal is to test the performance of the robust policy x(θ)

when committing to the releases upfront (based on a given demand level) while observing shortage

costs based on realizations of random demand.

We again consider the period from May 1, 2006, to May 1, 2019, during which the current policy

completes one cycle. To determine our policy, we fix the baseline demand D0 = 4,481,756 (af) as

well as the confidence parameter θ= 3000 ($/nat). Then, we test our policy against the benchmark

policies, with random yearly demand D sampled from a Normal distribution with mean µD =

D0 and standard deviation σD = 901,195 (af), truncated to the interval [0,2D0] to avoid negative

demand. The value of σD is estimated as the empirical standard deviation of total dry season

releases since the year 2000. In each period, the releases x(curr)(S), x(θ)(S), x(P)(S), x(D0)(S) =

min{D0,
∑N

i=1(Si − Smin
i )} , and x(0)(S) ≡ 0 are based on the fixed value D0 and the state S of
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the system. Then, the demand D̃ is sampled, and shortage costs c(x) = κ · (D̃ −
∑N

i=1 xi)
+ are

determined for each policy. Of course, the sampled demand D̃ might be above or below D0.

Running a Monte-Carlo simulation with 10,000 replications, the average cycle cost for the cur-

rent policy x(curr) amounts to 45.67 ($100M), while the cost for the robust policy x(θ) is only 16.34

($100M), which corresponds to a reduction of 64%. On average, the robust policy completes eight

cycles. When neglecting ambiguity, the policy x(P) completes six cycles (on average), incurring an

average cost of 18.80 ($100M). Hence, there is a 13% gain from following the robust approach.

The benchmark policy x(D0) performs poorly, not completing a single cycle and accruing a cost of

62.80 ($100M). Finally, the no-release policy x(0) has an average cost of 35.83 ($100M), which is

more than twice the cost of the robust policy.

As an additional benchmark, consider an anticipative policy x(D̃) =min{D̃,
∑N

i=1(Si−Smin
i )} ,

which observes the sampled demand D̃ at the beginning of a dry season and then satisfies it if

feasible. Although this policy has a clear informational advantage over the robust policy, blindly

satisfying demand would not be advisable. Indeed, the average cycle cost associated with x(D̃) is

26.44 ($100M), corresponding to 1.11 cycles on average, so it performs far worse than x(θ).

5.3.3. Two demand streams In the previous experiments, we accounted a constant cost of

$800 for each acre-foot of water shortage. However, when multiple demand streams are present, the

impact of a supply shortage may vary depending on which stream it affects. This means different

shortage costs could apply. Although accurately estimating demand and shortage costs becomes

even more challenging with multiple demand streams, our model (together with all our established

results) is not limited to a single demand stream. Therefore, we now test our model under the

assumption of two demand streams with different shortage costs.

Note that having multiple demand streams creates two competing goals: (i) achieving a shorter

cycle, as when there is a single demand stream; and (ii) satisfying the high-priority demand

streams, i.e., those with higher shortage costs, in the future. Thus, there is an additional trade-off

between satisfying non-essential needs today and leaving part of that demand unmet to save water

for high-priority needs tomorrow.

The downstream demand D is now split into an essential component D′ = 0.2D and a non-

essential component D′′ = 0.8D . This split is chosen based on information obtained from the oper-

ating agency (White 2022). The essential component D′ reflects the demand for public health and

safety, with κ′ = 800 ($), as before. For the non-essential component, we assume 70% lower costs,
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i.e., κ′′ = 240 ($). The ratio between κ′ and κ′′ reflects the relation between estimated shortage

costs for residential and agricultural customers, as suggested by McCann (2022). Given κ′ > κ′′ ,

the cost function can be written as c(x) = κ′ · (D′−min{x,D′})+κ′′ · (D′′− (x−min{x,D′}))+ .

D

x(θ) Average cycle cost reduction

Avg. fill rate Avg. cost
vs. x(P) vs. x(curr) vs. x(D0) vs. x(D′) vs. x(0)

D′ D′′ ($100M)

µD 100% 63% 4.74 −10% −40% −49% −45% −70%

N (µD, σD) 100% 68% 4.90 −13% −64% −73% −46% −69%

Table 2 Fill rate of essential demand and average cycle costs for two demand streams.

Table 2 summarizes the results under the assumption of a constant demand D =D0 (first row),

and in the setting of Section 5.3.2 with a Normally distributed demand around D0 (second row). We

include an additional benchmark policy x(D′) =min{D′,
∑N

i=1(Si − Smin
i )} , which only satisfies

essential demand D′ (if feasible). The second and third columns in Table 2 show the average fill

rates for the two demand streams when applying the robust policy x(θ). Notably, essential demand

is always satisfied 100% of the time, across all 13 years and all 10,000 paths sampled in the Monte-

Carlo simulation to generate the results in the second row. In contrast, non-essential demand is

not fully met to achieve shorter cycles. This strategy proves successful compared to the other

benchmark policies. In particular, the fifth column demonstrate that a more prudent choice of the

D′′ fill rate—D= µD: 63% (x(θ)) vs. 68% (x(P)); D∼N (µDlσD): 68% (x(θ)) vs. 73% (x(P))—can

lead to significantly reduced average cycle costs.

5.3.4. Choice of the confidence parameter The confidence parameter θ plays an important

role in our robust model. Hence, in this section we examine the performance of the proposed

heuristic policy x(θ) under different θ choices.

Table 3 shows a sensitivity analysis in the vicinity of θ∗ = 3000 ($/nat), which is the calibrated

value from Section 5.1. We observe that the number of completed cycles decreases in θ . This is

because lower confidence levels (i.e., smaller θ values) lead to more cautious release decisions and

more completed cycles. In contrast, average cycle costs are not monotonic in θ , attaining their

minimum at θ = 2000 ($/nat). The corresponding cost savings compared to the current policy are

about 44% . This finding supports the reliability of the calibration algorithm, as the ex-ante choice
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θ Completed Avg. Cycle Cost Cost Reduction

(in $/nat) Cycles (in $100M) vs. x(curr) vs. x(0) vs. x(P)

1000 10 17.42 −34% −51% −1%

2000 9 14.71 −44% −59% −17%

3000 8 15.80 −40% −56% −10%

4000 7 17.21 −34% −52% −2%

5000 6 19.61 −25% −45% +11%

Table 3 Sensitivity analysis of the benchmark study results, for varying choices of θ .

of θ∗ = 3000 ($/nat) is close to the ex-post optimal choice, capturing more than 90% of the ex-post

cost savings potential.

For very low confidence levels (i.e., θ ↓ 0), the robust policy approximates the no-release policy

x(0). Although a cycle is then completed after each year, it incurs very high yearly shortage costs,

making such overly conservative choice of θ unattractive. For high confidence levels (i.e., large θ

values), the number of completed cycles does not drop below six. Even the ambiguity-neglecting

policy x(P) based on the nominal model, which releases considerably more than the robust policy

for θ = 5000 ($/nat), results in six completed cycles for the given inflow scenarios. Hence, x(P)

incurs smaller average cycle costs than x(θ) for any θ ≥ 5000 ($/nat), but both costs converge

for θ sufficiently large. Notably, these results do not imply that x(θ) with θ ≥ 5000 ($/nat) would

perform worse than x(P) for all sets of inflow scenarios. Indeed, for any sample path, there is a

threshold beyond which x(P) outperforms x(θ). For the given historical sample path, this threshold

is at θ = 5000 ($/nat). However, the calibration algorithm determined a value of θ∗ = 3000 ($/nat)

for which the robust policy significantly outperforms x(P).

6. Conclusion

We have presented a model for the sustainable management of a system of water reservoirs, all

located in one river basin and collectively supplying downstream demand. The largest reservoir

system in California served as our motivation and case study. Using tools from distributionally

robust optimization and stochastic dynamic programming, we have incorporated major features

such as climate uncertainty and a stochastic planning horizon in a tractable manner. Our theoret-

ical analysis revealed structural results, allowing us not only to derive insights into the optimal

policy but also to suggest a computationally tractable heuristic that overcomes the curse of dimen-

sionality, together with performance bounds. Using real data from the Sacramento River Basin,
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we demonstrated the strength of the robust policy with suboptimality gaps below 15%. In a back-

testing benchmark study, we demonstrated the potential of the robust policy to significantly reduce

average shortage costs over “full-to-full” cycles, usually by more than 40% compared to the current

policy and other benchmarks.

The obtained results are based on the assumption that inflows into individual reservoirs are per-

fectly correlated. In the case of California, this assumption is supported by very high correlations

observed in historical data (see Figure 1). For other river basins with less correlation, the relaxation

of this assumption might be an interesting direction for future research. We note that the majority of

our results could be extended to a model with multiplicative white noise that is reservoir-specific.

However, the resulting bounds would be weaker and solving the value iteration problem would

become computationally more challenging. Most critically, one would have to rethink Proposi-

tion 7, which does not extend naturally. Hence, exploring other heuristics could be worthwhile.

We believe that the results contained in this paper have the potential to impact the practice of

water resources management in two significant ways. First, we hope that the demonstrated eco-

nomic potential to significantly reduce average cycle costs can influence practitioners to consider

alternative planning horizons, performance metrics, and the impact of climate uncertainty. Sec-

ond, our model may serve as a decision support tool for policymakers, for instance, related to the

actively debated question of whether it is preferable to extend the capacity of existing reservoirs or

to add newly built infrastructure (see, e.g., Barringer 2022). Given reliable cost estimates for such

plans, our model could help examine the operational impact of the options under consideration.

Another example is the question of centralizing reservoir management at the level of river basins,

where the operational benefits of coordination could be assessed using our model. Numerous use

cases for our model seem to exist, but each warrants a study of its own, going beyond the scope of

the present paper.

In conclusion, the sustainable management of water reservoir systems is critical for ensuring

water security, especially in the face of climate uncertainty. Our model provides a robust framework

for strategically optimizing reservoir operation over dry seasons, offering both theoretical insights

and practical guidelines. Future research can build on our framework to explore additional aspects

of water resource management. We hope that our work will ultimately contribute to more efficient

and sustainable water management practices.



Caro, Glanzer, Rajaram: Sustainable Management of a Water Reservoir System Facing Climate Uncertainty
33

Acknowledgments

The authors are grateful to the United States Bureau of Reclamation, in persona Deputy Regional

Director Kristin White, for valuable discussions and feedback on our modeling assumptions.

References

American Society of Civil Engineers, ASCE . 2021. Dams 2021. 2021 Report Card for America’s Infrastructure .

Barringer, Felicity. 2022. Does drought-prone California need another reservoir? ’& the West’, a magazine presented

by Stanford University’s Bill Lane Center for the American West .

Bertsekas, Dimitri P., John N. Tsitsiklis. 1989. Parallel and Distributed Computation: Numerical Methods. Athena

Scientific.

Bertsekas, Dimitri P., John N. Tsitsiklis. 1991. An Analysis of Stochastic Shortest Path Problems. Mathematics of

Operations Research 16(3) 580–595.

Bertsimas, Dimitris, Vishal Gupta, Nathan Kallus. 2018. Data-driven robust optimization. Mathematical Programming

167(2) 235–292.

Brown, David B., James E. Smith, Peng Sun. 2010. Information Relaxations and Duality in Stochastic Dynamic

Programs. Operations Research 58(4, Part 1) 785–801.

Chun, Myung J. 2022. Shasta Lake at 38% capacity heading into the hottest months of the year. https://www.

latimes.com/california/story/2022-07-22/shasta-lake-at-38-percent-capacit

y-heading-into-the-hottest-months-of-the-year. Accessed 30-Aug-2024.

Donsker, Monroe D., S. R. Srinivasa Varadhan. 1983. Asymptotic evaluation of certain Markov process expectations

for large time. IV. Communications on Pure and Applied Mathematics 36(2) 183–212.

Elleuch, Mohamed, Frikha Ahmed, Francisco Silva Pinto. 2022. A Review On Water Resources Management Mod-

eling Using Operational Research and Decision Aid Sciences. 2022 International Conference on Decision Aid

Sciences and Applications (DASA). 1565–1571.

Esfahani, Peyman Mohajerin, Daniel Kuhn. 2018. Data-driven distributionally robust optimization using the Wasser-

stein metric: performance guarantees and tractable reformulations. Mathematical Programming Series A 171

115–166.

Fahlbusch, H. 2009. Early dams. Proceedings of the Institution of Civil Engineers - Engineering History and Heritage

162(1) 13–18.

Gauvin, Charles, Erick Delage, Michel Gendreau. 2017. Decision rule approximations for the risk averse reservoir

management problem. European Journal of Operational Research 261(1) 317–336.

Gauvin, Charles, Erick Delage, Michel Gendreau. 2018a. A stochastic program with time series and affine decision

rules for the reservoir management problem. European Journal of Operational Research 267(2) 716–732.

Gauvin, Charles, Erick Delage, Michel Gendreau. 2018b. A successive linear programming algorithm with non-linear

time series for the reservoir management problem. Computational Management Science 15(1) 55–86.



Caro, Glanzer, Rajaram: Sustainable Management of a Water Reservoir System Facing Climate Uncertainty
34

Georgakakos, Aris P., Konstantine Georgakakos. 2007. Integrated Forecast and Reservoir Management for Northern

California: System Development and Initial Demonstration. Tech. rep., Hydrologic Research Center and Georgia

Water Resources Institute.

Georgakakos, K. P., T. M. Modrick, J. A. Sperfslage, C. R. Spencer, R. J. Banks, A. P. Georgakakos, M. Kistenmacher,

X. Liu. 2018. Integrated Forecast and Reservoir Management (INFORM). Final Report Prepared for the State

of California, Department of Water Resources .

Giuliani, M., Jonathan R. Lamontagne, P. M. Reed, Andrea Castelletti. 2021. A State-of-the-Art Review of Optimal

Reservoir Control for Managing Conflicting Demands in a Changing World. Water Resources Research 57.
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EC.0. Additional notation for the EC

Some parts of both EC.1 and EC.2 require the introduction of additional notation. For some vec-

tor y , we denote by πa(y) and πd(y) the permutations of indices such that the values of y are

sorted in ascending and descending order, respectively. In this way, we can also sort one vector

according to another one. For instance, let x = [10,11,12,13] and y = [8,6,9,7] . Then πa(y) =

[2,4,1,3], πd(y) = [3,1,4,2], xπa(y) = [11,13,10,12], xπd(y) = [12,10,13,11] . To access elements

of the sorted vectors, we use the notation xπ(y),i such that, e.g., xπa(y),1 = 11 and xπd(y),2 = 10 .

When considering the sorted values of y directly, then we abbreviate the i-th order statistic by

yπa,i := yπa(y),i and yπd,i := yπd(y),i .

EC.1. Supplemental material

This section contains auxiliary results and detailed constructions/algorithms to complement the

main text of the paper.

EC.1.1. Auxiliary results for Section 3.3

The following results are used in the buildup to Proposition 7.

LEMMA EC.1. If for two states S(1) and S(2) it holds almost everywhere (i.e., for all inflow sce-

narios Γ) that

N∑
i=1

min
{
Ci, S

(1)
i + ξi

}
≥

N∑
i=1

min
{
Ci, S

(2)
i + ξi

}
, (EC.1)

then

max
i=1,...,N

δi(S
(1)
i )≤ max

i=1,...,N
δi(S

(2)
i ) . (EC.2)

If strict inequality holds in (EC.1) with positive probability, then strict inequality holds in (EC.2).

LEMMA EC.2. Let S be a balanced state. Consider a release vector x∗ such that 1
(1−βi)αi

x∗
i =

1
(1−βj)αj

x∗
j for all 1≤ i, j ≤N . Then, for any other release vector x with

∑
i xi =

∑
i x

∗
i , it holds

almost everywhere that
∑

imin{Ci, Si + ξi − x∗
i } ≥

∑
imin{Ci, Si + ξi − xi} . Strict inequality

holds with positive probability.
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COROLLARY EC.1. Let the state S of a system be given. Consider two feasible release decision

vectors x and x∗ with
∑N

i=1 xi =
∑N

i=1 x
∗
i , such that the condition

N∑
i=1

min{Ci, Si + ξi −x∗
i } ≥

N∑
i=1

min{Ci, Si + ξi −xi} (EC.3)

holds almost everywhere and strict inequality holds with a positive probability. Then

c (x∗)+ θ log

(
E
[
e

vθ(min{C,S+ξ−x∗})
θ

])
< c (x)+ θ log

(
E
[
e

vθ(min{C,S+ξ−x})
θ

])
.

The interpretation of Corollary EC.1 is that if condition (EC.3) holds for a given pair of feasi-

ble release decision vectors x and x∗ , which correspond to an equal total amount of water to be

released from the system, then x∗ is a better decision than x .

EC.1.2. Tightening the lower bound of Section 4.1

Any given state S(1) of the aggregate reservoir corresponds to at least one feasible state S(N)

of the N -reservoirs system, such that
∑

iS
(N)
i = S(1) . If S(N) is ambiguous, then the candidate

states can be ranked with respect to their favorability. In particular, a system that is in a balanced

(post decision) state either reaches the terminal state or it can store the entire total inflow over

the upcoming wet season. Thus, a balanced system is most favorable, as it stores at least as big

a part of the total inflow as a system in any other state S(N) with
∑

iS
(N)
i = S(1) . If there is no

feasible balanced state S(N) with
∑

iS
(N)
i = S(1) (due to the minimum levels), then there is a most

favorable feasible weakly-balanced state with this property. Given S(1) together with a release

decision X(S(1)) , the structure of an optimal policy known from Section 3.3 allows to determine

the most favorable post-decision state in the corresponding N -reservoirs system by determining

the most favorable pre-decision state Ŝ(N) with
∑

i Ŝ
(N)
i = S(1) , and then splitting up X(S(1))

among the reservoirs in an optimal way. The technical construction of such a most favorable state

Ŝ(N) with given total amount of stored water S(1) is detailed below the Proposition.

PROPOSITION EC.1. Consider the setting of Proposition 8, but let the state update for the aggre-

gated problem be given by

S
(1)
t+1 =min

{
C(1), S

(1)
t +

N∑
i=1

min
{
(1− βi)αiΓ,Ci − Ŝ

(N)
i (S

(1)
t )
}
−X(S

(1)
t )− e(1)

}
,
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where Ŝ
(N)
i (S

(1)
t ) denotes the i-th component of the most favorable state Ŝ(N) with

∑N
i=1 Ŝ

(N)
i =

S(1) , as constructed below. Denote by v̂
(1)
θ , v

(1)
θ , and v

(N)
θ the optimal value function to this prob-

lem, the one of Proposition 8, and the one corresponding to the N -reservoirs system, respectively.

Then, it holds for any state S(N) of the system of N reservoirs, that

v
(1)
θ

(∑
i
S
(N)
i

)
≤ v̂

(1)
θ

(∑
i
S
(N)
i

)
≤ v

(N)
θ

(
S(N)

)
.

On the construction of the most favorable state. Let the total amount of stored water S(1) in

the system of N reservoirs be given. A balanced state S = (S1, . . . , SN) such that
∑N

i=1Si = S(1),

is uniquely determined by setting

Si =
αi(1− βi)∑N
j=1αj(1− βj)

(
S(1)+

∑
j ̸=iαj(1− βj)

αi(1− βi)
(Ci + ei)−

∑
j ̸=i

(Cj + ej)

)
.

If such a state S results in a set of indices J ⊂ {1, . . . ,N} with Sj <Smin
j for j ∈J , then setting

S̃(1) := S(1)−
∑
j∈J

Smin
j

∀j ∈J : Sj := Smin
j

∀i /∈J : Si :=
αi(1− βi)∑

k/∈J αk(1− βk)

S̃(1)+

∑
k/∈J ,k ̸=iαk(1− βk)

αi(1− βi)
(Ci + ei)−

∑
k/∈J ,k ̸=i

(Ck + ek)


(EC.4)

gives a weakly-balanced state S with
∑N

i=1Si = S(1). If this state again leads to a (new) set of

indices J ′ with Sj′ < Smin
j′ for all j′ ∈ J ′ , then the procedure can iteratively be repeated with an

updated set J =J ∪J ′ .

EC.1.3. On the construction of the least favorable state in Section 4.3

Let the total amount of stored water S(1) in the system of N reservoirs be given. Starting at the

beginning of a cycle and releasing according to the policy of Section 4.2, the most unbalanced state

S with
∑N

i=1Si = S(1), which could be reached when all reservoirs had unlimited capacity, would

be the result of inflow after the system was in the post-decision state Smin = (Smin
1 , . . . , Smin

N ) . This

state S would be given by

Si = Smin
i +αi(1− βi) ·

S(1) −
∑N

j=1(S
min
j − ej)∑N

j=1αj(1− βj)
− ei (EC.5)
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for all i= 1, . . . ,N . If such a state S results in a set of indices J ⊊ {1, . . . ,N} with Sj > Cj for

all j ∈ J , then S cannot be reached from (Smin
1 , . . . , Smin

N ) in a feasible way due to the different

capacities. One therefore needs to adjust the preceding post-decision state. Assuming a discrete

state space with stepsize ∆i for reservoir i, this adjustment to determine a preceding post-decision

state S ′ that can lead to the most unbalanced state S in a feasible way due to inflow realization, can

be made by performing the following iterative procedure:

1: Starting point: S according to (EC.5); ∃J ⊊ {1, . . . ,N} with Sj >Cj for all j ∈J

2: Init Smin ′
i := Smin

i , δ′i :=
1

αi(1−βi)
(Ci − (Smin ′

i − ei))∀i= 1, . . . ,N

3: Init k := 2

4: while |J |> 0 do

5: if Smin ′
πa(δ′),k +∆k <Ck + ek −αk(1−βk) · δ′πa,k−1 then

6: Update Smin ′
πa(δ′),k := Smin ′

πa(δ′),k +∆k

7: else

8: Update Smin ′
πa(δ′),k :=Ck + ek −αk(1−βk) · δ′πa,1

9: Set k := k+1

10: end if

11: For all i= 1, . . . ,N , compute S′
i according to (EC.5) based on Smin ′

i

12: Update J := {j = 1, . . . ,N : S′
j >Cj}

13: end while

14: return S′

The “else” statement in Step 7 ensures that δ′k ≤ δ′πa,1 for all k = 1, . . . ,N . The notation used in

the algorithm is defined in EC.0.

EC.1.4. An upper bound based on information relaxation

Upper bounds for maximization problems can generally be obtained by enlarging the set of feasible

solutions. For our problem (7), this can be achieved by relaxing the nonanticipativity constraint on

the transition distributions. This idea is usually referred to as information relaxation (see Brown

et al. 2010 for a general introduction). Our approach is adopted from Kim and Lim (2016).

Given our discrete state space, optimizing over transition distributions QSt,x(St) in (7) is equiva-

lent to optimizing over likelihood ratios

yt(j) :=
Q[St+1 = j|St, x(St)]

P[St+1 = j|St, x(St)]
.
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Let Y := {(yt)t≥0 : yt ≥ 0,
∑

j∈S yt(j)P[St+1 = j|St, x(St)] = 1 ∀St ∈ S, t ≥ 0} denote the set of

all admissible sequences of such likelihood ratios. Then, problem (7) can be written as

vθ(x,C) =max
y∈Y

EP

[
τ−1∑
t=0

zt · cθ(St, x(St), yt)+ zτ · 0

∣∣∣∣∣S0 =C

]
(EC.6a)

s.t. z0 = 1, zt =
t−1∏
k=0

yk(Sk+1) , (EC.6b)

where cθ(St, x(St), yt) := c(x(St))− θ
∑

j∈S yt(j) log(yt(j))P[St+1 = j|St, x(St)] . Define the fil-

tration Gt := σ({S0, x(S0), . . . , St, x(St)}) . Then G∞ corresponds to the complete record of states

and release decisions until the terminal state is reached. Let Y be the set of all admissible, G∞-

measurable sequences of likelihood ratios. Essentially, Y corresponds to the set of processes cor-

responding to likelihood ratios on a given path (s0, x(s0), s1, x(s0) . . . , sτ ) . Then, an upper bound

for problem (EC.6) is given by:

vθ(x,C)≤max
y∈Y

{
EP [P (y)|S0 =C] s.t. (EC.6b)

}
=EP

[
max
y∈Y

{P (y) s.t. (EC.6b)}
∣∣∣∣S0 =C

]
,

(EC.7)

where P (y) :=
∑τ−1

t=0 zt · cθ(st, x(st), yt) . To tighten the upper bound in (EC.7), a term

λ(h, y) :=
τ−1∑
t=0

zt

(
yt(St+1)h (x(St), St+1)−

∑
j∈S

yt(j)h(x(St), j)P[St+1 = j|St, x(St)]

)
,

with a bounded function h : X × S → R, |h(·, ·)| ≤ ch < ∞ , can be introduced to, intuitively

speaking, penalize the exploitation of being clairvoyant. The resulting penalized problem is given

by

EP
[
max
y∈Y

{P (y)−λ(h, y) s.t. (EC.6b)}
]
. (EC.8)

The following lemma shows that the penalty term has expectation zero.

LEMMA EC.3. For any y ∈Y , the penalty function λ(h, y) satisfies

EP[λ(h, y)|z0, y0] = 0 .

Therefore, also the penalized problem (EC.8) yields an upper bound on vθ(x,C) .

In contrast to the discounted infinite horizon setting used in Kim and Lim (2016), our stochastic

shortest path model does not seem to allow showing Lemma EC.3 based on the Bounded Conver-

gence Theorem. Our proof in Section EC.2 is therefore based on martingale theory instead. Given

Lemma EC.3, the following proposition can then be shown in a similar way as Theorem 3 in Kim

and Lim (2016).
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PROPOSITION EC.2. For a given policy x(·) , let a path (s0, x(s0), s1, x(s0) . . . , sτ ) be given.

Define the constant

βt(f) :=

[
exp

(
f −h (x(st), st+1) (1−P[St+1 = st+1|st, x(st)])

θ ·P[St+1 = st+1|st, x(st)]

)
·P[St+1 = st+1|st, x(st)]

+
∑

j ̸=st+1

exp

(
h (x(st), j)

θ

)
·P[St+1 = j|st, x(st)]

−1

.

Then, the optimal objective value fλ
0 for the problem maxy∈Y {P (y)−λ(h, y) s.t. (EC.6b)} can be

obtained by the following backwards recursion:

fλ
τ = 0

fλ
t = c(x(st))− θ · log

(
β(fλ

t+1)
)

for t= τ − 1, . . . ,0 .

For a given policy x(·) , a path (s0, x(s0), . . . , sτ ) of states and releases can easily be sim-

ulated under the nominal distribution P . Given such a simulated path, Proposition EC.2 pro-

vides a recursion scheme to compute the optimal value for the pathwise maximization problem

maxy∈Y {P (y)−λ(h, y) s.t. (EC.6b)} . The value of the upper bound (EC.8) can thus be estimated

by a standard Monte-Carlo simulation. A feasible choice for the penalty function would, for exam-

ple, be given by setting h(·) equal to the value function of the aggregated system studied in Sec. 4.1.

EC.1.5. A cross-validation algorithm to calibrate the confidence parameter θ

1: Fix values for the hyperparameters K,nK , the number of simulation runs L , and candidate values {θ1, . . . , θM}

2: Follow the bootstrapping method of Sect. 5.1 to generate a set Ω of nK ·K hypothetical yearly inflows.

3: Partition Ω into K subsets Ω1, . . . ,ΩK , such that |Ωk|= nK for all k= 1, . . . ,K .

4: for m= 1, . . . ,M do

5: for k= 1, . . . ,K do

6: Set Vk := Ωk and Tk :=∪j ̸=kΩj .

7: Fit a (gamma mixture) distribution Pk based on the data in Tk .

8: Determine the policy xm,k according to the heuristic of Section 4.2, based on θ= θm and P= Pk .

9: Simulate L cycles for the policy xm,k , by randomly drawing inflows (with replacement) from the validation

set Vk . Denote the simulated cycle costs by ϕk,1(θm), . . . , ϕk,L(θm) .

10: Compute the average cycle cost ϕk(θm) := 1
L

∑L

ℓ=1
ϕk,ℓ(θm) based on Vk and Tk (and θm).

11: end for

12: Compute ϕ(θm) := 1
K

∑K

k=1
ϕk(θm) as an estimate of the average out-of-sample cost associated with θm .

13: end for

14: return θ= argminm=1,...,M ϕ(θm) .



e-companion to Caro, Glanzer, Rajaram: Sustainable Management of a Water Reservoir System Facing Climate Uncertainty ec7

EC.1.6. On the estimation of the inflow constants αi in Section 5

Consider N reservoirs i= 1, . . . ,N . Let yearly inflow data Γ̂t,i be given for each reservoir i over

t = 1, . . . , T years. To obtain such Γ̂t,i , we aggregated the available daily data on a yearly basis

(from May to April in the following year), for T = 24 years (2000–2023). We then estimated

αi, i= 1, . . . ,N , according to the following procedure:

1: Init data as a T -dimensional vector.

2: for t= 1, . . . , T do

3: data(t) = Γ̂t,i/Γ̂t,1

4: end for

5: return αi :=
1
T

∑T

t=1
data(t)

By construction, α1 = 1 holds. For all i ≥ 2 , αi reflects the average yearly inflow relative to the

first reservoir (Shasta Lake).

EC.1.7. On the estimation of the outflow constants βi in Section 5

Consider N reservoirs together with yearly inflow data Γ̂t,i as in Section EC.1.6 above. For each t=

1, . . . , T , let outflow data Bt,i be given for the respective rainy season. For instance, Γ̂1,1 represents

the aggregate inflow into Shasta Lake from 2000/05/01 to 2001/04/30, while B1,1 represents the

aggregate outflow from Shasta Lake from 2000/10/01 to 2001/04/30. We then estimated βi, i =

1, . . . ,N , according to the following procedure:

1: Init data as a T -dimensional vector.

2: for t= 1, . . . , T do

3: data(t) =Bt,i/Γ̂t,i

4: end for

5: return βi :=
1
T

∑T

t=1 data(t)

Then βi reflects the average outflow from reservoir i during a wet season (October to April in the

following year), relative to the inflow over the entire year (May to April in the following year)

containing that wet season.
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EC.2. Proofs

Proof of Lemma 1. We assume a discrete state space here. This is to directly relate to the defi-

nition of stochastic shortest path problems presented in Bertsekas and Tsitsiklis (1989), and allows

a constructive proof using standard linear algebra arguments.

For the (post decision) state transition matrix P , let the element in the upper left corner corre-

spond to remaining in the absorbing state S , and the element in the lower right corner correspond

to remaining in the state where Smin
i holds for all i. Order all other states (along each axes) in such

a way that no state dominates any preceding one in all dimensions. Then, the transition matrix

satisfies the following properties: (i) the first element equals 1; (ii) all entries in the first column as

well as on the main diagonal are strictly positive; (iii) the rows of the matrix P − λI are linearly

independent, for all eigenvalues λ of P and I denoting the identity matrix. Thus, the matrix P is

diagonalizable and we may write the t-th power of P as P t = V DtV −1, where D is the matrix

of eigenvalues and V a matrix of (columnwise) corresponding eigenvectors. The largest eigen-

value of P equals 1. All other eigenvalues λi , corresponding to the elements on the main diagonal

of P starting from row 2, satisfy 0 < λi < 1 and therefore limt→∞ λt
i = 0 . Thus, limt→∞Dt =

diag(1,0, . . . ,0) . The matrix V is a lower triangular matrix, where all elements in the first col-

umn have the same value. The inverse of a lower triangular matrix is another lower triangular

matrix, whose main diagonal consists of the reciprocals of the original diagonal elements. Thus,

limt→∞P t = V limt→∞DtV −1 is a matrix where all elements in the first column are one and all

other elements are zero. This proves the assertion that, in the limit, the absorbing state is reached

with probability one from any given state. □

Proof of Proposition 1. Follows directly from Prop. 3 in Bertsekas and Tsitsiklis (1989). □

Proof of Proposition 2. Let cθ(x(St),Qt) := c(x(St))− θDKL(Qt∥P). With this notation, the

robust model in Equation (4) can be expressed as follows:

vθ(S) =min
x≥0

sup
Q∈Q

EQ

[
τ∑

t=0

cθ(x(St),Qt)

∣∣∣∣∣S0 = S

]
(EC.9)

s.t. St+1,i =min{St,i + ξt,i −xi(St),Ci} ≥ Smin
i a.s. ∀i≤N,∀t≥ 0,

where Q= {Qt ∈Π, t≥ 0} and Π= {Q=Q(S,x(S)) : S ∈ S,Q≪ P} .
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Let Q∗ = (Q∗
0,Q∗

1,Q∗
2, . . .) denote the optimal Q in Equation (EC.9). By the well-known

Donsker and Varadhan’s variational formula (see Donsker and Varadhan 1983), the inner stage-

wise, conditional maxima contained (implicitly) in the objective of (EC.9), are attained by the

distributions Q∗
t with Radon-Nikodym derivative

dQ∗
t

dP
=

e
EQ

∗
[∑τ

k=t+1 cθ(x(Sk),Q∗
k)|St+1]

θ

EP

[
e

EQ∗ [∑τ
k=t+1

cθ(x(Sk),Q∗
k)|St+1]

θ

∣∣∣∣St, x(St)

] , (EC.10)

such that Q∗
t (St+1 = S)> 0 holds for all St and feasible x(St) due to Assumption 1 on P. Then, it

follows analogously to Lemma 1 that all policies are proper under the Q∗ distribution.

We now show that a minimax Bellman equation holds for (EC.9). Define a sequence (v(k)θ (S))k≥0

for each state S , where v
(k)
θ (S) := min0≤x≤S−Smin supQ∈Q EQ

[∑min{τ,k}
t=0 cθ(x(St),Qt)

∣∣∣S0 = S
]

denotes the optimal worst-case expected costs of reaching the target state S in at most k steps,

with the state-update being defined as in (EC.9). For this k-step finite-horizon cost approximation,

a minimax Bellman equation is available (see González-Trejo et al. (2002, Theorem 3.1)):

v
(k)
θ (St) = min

0≤x≤St−Smin
sup
Qt∈Π

cθ(x(St),Qt)+EQt [v
(k−1)
θ (St+1)] .

It follows from a straightforward induction argument that v(k)θ (S) is monotonically increasing in

k. Since all feasible policies x in (EC.9) are proper under the corresponding worst-case distribu-

tions, we may choose any feasible policy x̃ to get a uniform upper bound

v
(k)
θ (S)≤ sup

Q∈Q
EQ

[
τ∑

t=0

cθ(x̃(St),Qt)

∣∣∣∣∣S0 = Smin

]
<∞ (EC.11)

for all k and S . Hence, vθ(S) = limk→∞ v
(k)
θ (S) holds for all S ∈ S by the Monotone Conver-

gence Theorem. Uniform convergence then holds by Dini’s Theorem under the given assumptions.

Hence,

vθ(St) = lim
k→∞

min
0≤x≤St−Smin

sup
Qt∈Π

cθ(x(St),Qt)+EQt [v
(k−1)
θ (St+1)]

= min
0≤x≤St−Smin

sup
Qt∈Π

cθ(x(St),Qt)+EQt [vθ(St+1)] ,
(EC.12)

where interchanging the limit and expectation is justified by the Bounded Convergence Theorem

based on the uniform bound given in (EC.11).
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Again, all feasible policies are proper in (EC.12) (under the worst-case distributions) due to

Assumption 1 on P . Hence, uniqueness of the solution to the minimax Bellman equation (EC.12)

follows from Bertsekas and Tsitsiklis (1991, Proposition 1) and the Banach Fixed-Point Theorem.

Finally, a direct application of the Donsker and Varadhan variational formula yields

vθ(St) = min
0≤x≤St−Smin

c(x)+ sup
Qt∈Π

EQt

[
vθ(min{St+ ξ−x,C})

]
− θ ·DKL(Qt∥P)

= min
0≤x≤St−Smin

c(x)+ θ log
(
EP
[
e

vθ(min{St+ξ−x,C})
θ

])
.

□

Proof of Proposition 3. For ease of notation, define the state update function g(S,x, ξ) :=

min{C,S + ξ− x} . Denote the density of the inflow distribution P by p(·) . Notice from a simple
case differentiation that for a convex function h(y) which is decreasing on [Smin,C] , it holds that
h̃(y) := h(min{C,y}) is also convex and non-increasing. We now show the convexity and mono-
tonicity of the optimal value function in an inductive way, by using the value iteration scheme.
Define fvθ(S,x) := c(x) + θ log

(
E
[
e

vθ(g(S,x,ξ))

θ

])
, such that for the optimal value function v∗θ(·)

it holds v∗θ(S) = minx fv∗θ (S,x) . Let vk(·) be a convex, decreasing function. Then, for any pair of
states S1, S2 ≤C , feasible release decisions x1, x2 , respectively, and λ∈ [0,1] , it holds that

fvk(λS1 +(1−λ)S2, λx1 +(1−λ)x2)

= c(λx1 +(1−λ)x2)+ θ log

(∫
e

vk(g(λS1+(1−λ)S2,λx1+(1−λ)x2,ξ(ω)))

θ p(ω)dω

)
≤ λc(x1)+ (1−λ)c(x2)+ θ log

(∫
eλ

vk(g(S1,x1,ξ(ω)))

θ
+(1−λ)

vk(g(S2,x2,ξ(ω)))

θ p(ω)dω

)
= λc(x1)+ (1−λ)c(x2)+ θ log

(∫ (
e

vk(g(S1,x1,ξ(ω)))

θ
+log(p(ω))

)λ (
e

vk(g(S2,x2,ξ(ω)))

θ
+log(p(ω))

)(1−λ)

dω

)
≤ λc(x1)+ (1−λ)c(x2)+ θ log

((∫
e

vk(g(S1,x1,ξ(ω)))

θ
+log(p(ω))dω

)λ

·
(∫

e
vk(g(S2,x2,ξ(ω)))

θ
+log(p(ω))dω

)1−λ
)

= λ · fvk(S1, x1)+ (1−λ) · fvk(S2, x2) ,

i.e., the function fvk(·, ·) is jointly convex. The first inequality followed directly from the convexity

of c(·) and vk(·) (and the fact that the logarithm is a monotonic function), and the second inequal-

ity followed from Hölder’s inequality. Joint convexity of fvk(·, ·) is a sufficient condition for the

convexity of vk+1(S) :=minx fvk(S,x) :

λvk+1(S1)+ (1−λ)vk+1(S2) = λfvk(S1, x
∗
k,1)+ (1−λ)fvk(S2, x

∗
k,2)

≥ fvk(λS1+(1−λ)S2, λx
∗
k,1+(1−λ)x∗

k,2)

≥min
x

fvk(λS1+(1−λ)S2, x) = vk+1(λS1+(1−λ)S2) ,
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where x∗
k,i ∈ argminx fvk(Si, x) , for i= 1,2 . Moreover, if vk(S1)> vk(S2) holds for any S1 >S2 ,

then it also holds

vk+1(S1) = c(x∗
k,1)+ θ log

(
E
[
e

vk(g(S1,x
∗
k,1,ξ))

θ

])
> c(x∗

k,1)+ θ log

(
E
[
e

vk(g(S2,x
∗
k,1,ξ))

θ

])
≥min

x
c(x)+ θ log

(
E
[
e

vk(g(S2,x,ξ))

θ

])
= vk+1(S2) .

Hence, starting from a convex, decreasing function v0(·) , performing the value iteration vk+1(S) =

minx fvk(S,x) preserves the convexity and monotonicity property in each iteration step. Since the

value iteration is guaranteed to converge to the optimal value function v∗(S) by Proposition 2, the

assertions are shown. □

Proof of Proposition 4 . It follows from the proof of Proposition 3, that the function f(y) :=

θ log
(
E
[
e

v(min{C,y+ξ}
θ

])
is convex and decreasing on [Smin,C] . Thus, its derivative f ′(y) is increas-

ing. If f ′(Smin) > −κ , define S∗ := Smin . If f ′(Smax) < −κ , define S∗ := Smax . If f ′(Smin) ≤

−κ and f ′(Smax) ≥ −κ, define S∗ as the argument of f(·) for which f ′(S∗) = −κ holds. Then,

f ′(S)<−κ holds for all S < S∗ and f ′(S)>−κ holds for all S > S∗ . Let Smin ≤ S1 <S2 ≤ S∗ .

Then it holds (f(S2)− f(S1))/(S2−S1)<−κ , which implies

f(S2)− f(S1)<−κ(S2−S1) = κ(D− (S2−S1))−κ(D− 0)≤ c(S2−S1)− c(0) ,

which is equivalent to c(0) + f(S2) < c(S2 − S1) + f(S1) . Hence, x = 0 is better than any other

feasible decision given the state S2 , which shows the optimality of releasing zero in this case.

Now let S∗ ≤ S1 ≤ S2 ≤min{S∗ +D,C} . For S1 >S∗ , it holds (f(S1)− f(S∗))/(S1 −S∗)>

−κ , which implies

f(S1)− f(S∗)>−κ(S1−S∗) = κ(D− (S2−S∗))−κ(D− (S2−S1)) ,

which is equivalent to κ(D− (S2−S1))+f(S1)>κ(D− (S2−S∗))+f(S∗) . Hence, the optimal

release decision in this case is given by x∗(S2) = S2−S∗ .

For C ≥ S2 > S∗ + D , the same argument applies for the optimality of x∗(S2) = D when

replacing S∗ by S2 −D . For any x > D , it holds c(D) = c(x) and hence c(D) + f(S2 −D) <

c(x)+ f(S2−x) by the monotonicity of f . □

Proof of Proposition 5. As in the proof of Proposition 3 above, we exploit the value iteration

scheme. Assume a value function vθ,k(S), which is decreasing in θ , for any given state S . For
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ease of notation, define the state update function g(S,x, ξ) :=min{C,S+ ξ−x} and the objective

function fk
S(x, θ) := c(x) + supQ≪P{EQ[vθ,k(g(S,x, ξ))]− θDKL(Q∥P)} in the dynamic program-

ming formulation (5). Then, the value iteration is given by vθ,k+1(S) =minx f
k
S(x, θ). For a given

value of θ = θ0 and a given decision x, let Qk,∗
0 (x) be the optimal distribution for the maximiza-

tion in the definition of fk
S(x, θ) . By (EC.10), such a distribution Qk,∗

0 (x) exists uniquely and

the supremum is attained. Now consider θ1 > θ0. If there existed a distribution Q1(x) such that

−θ1DKL(Q1(x)∥P) + EQ1(x)[vθ1,k(g(S,x, ξ))] ≥ −θ0DKL(Qk,∗
0 (x)∥P) + EQk,∗

0 (x)[vθ0,k(g(S,x, ξ))]

holds, then, as KL divergence is non-negative and vθ,k(·) is decreasing in θ ,

−θ0DKL(Q1(x)∥P)+EQ1(x)[vθ0,k(g(S,x, ξ))]>−θ1DKL(Q1(x)∥P)+EQ1(x)[vθ0,k(g(S,x, ξ))]

>−θ1DKL(Q1(x)∥P)+EQ1(x)[vθ1,k(g(S,x, ξ))]

≥−θ0DKL(Q∗
0(x)∥P)+EQ∗

0(x)[vθ0,k(g(S,x, ξ))] ,

which contradicts the optimality of Q∗
0(x) for θ = θ0. Thus, for any given x, the term

supQ≪P{−θDKL(Q∥P) +EQ[vθ,k(g(S,x, ξ))]} is decreasing in θ. Define x∗
θi
:= argminx f

k
S(x, θi)

for i= 0,1 , with θ0 < θ1 . Then,

vθ0,k+1(S) = fk
S(x

∗
θ0
, θ0)> fk

S(x
∗
θ0
, θ1)≥min

x
fk
S(x, θ1) = vθ1,k+1(S) ,

which shows that the value iteration preserves the monotonicity of the value function. □

Proof of Lemma EC.1. Suppose maxi=1,...,N δi(S
(1)
i )>maxi=1,...,N δi(S

(2)
i ) holds. Consider

Γ∈
[
max

i=1,...,N
δi(S

(2)
i ), max

i=1,...,N
δi(S

(1)
i )

)
.

Then

N∑
i=1

min
{
Ci, S

(2)
i + ξi

}
=

N∑
i=1

Ci >
N−1∑
i=1

Cπa(δ(S(1)+ξ)),i +(S(1) + ξ)πa(δ(S(1)+ξ)),N

≥
N∑
i=1

min
{
Ci, S

(1)
i + ξi

}
,

which contradicts the assumption in (EC.1). □

Proof of Lemma EC.2. The proof uses the notation introduced in EC.0. We start by check-

ing how much water we might lose (due to spilling requirements resulting from exceeding the

capacity), when using the different release decisions. Consider an inflow realization Γ such that
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ξ1 ≤ C1 − (S1 − x∗
1). Then none of the reservoirs exceeds its capacity. For x, on the other hand,

there might be a loss resulting from a reservoir exceeding its capacity. In any case, the total amount

of water in the system when releasing according to x∗ will be larger than (or equal to) the total

amount of water when following x.

Now consider Γ such that ξ1 >C1−(S1−x∗
1) . Let K :=max{k≤N : (S+ξ−x−C)πd,k ≥ 0} .

Then it holds

N∑
i=1

(Si + ξi−xi −Ci)
+− (Si+ ξi −x∗

i −Ci)
+

=
K∑
k=1

(x∗−x)πd(S+ξ−x−C),k −
N∑

k=K+1

(S+ ξ−x∗−C)πd(S+ξ−x−C),k

≥
K∑
k=1

(x∗−x)πd(S+ξ−x−C),k −
N∑

k=K+1

[(S+ ξ−x∗−C)− (S+ ξ−x−C)]πd(S+ξ−x−C),k

=
K∑
k=1

(x∗−x)πd(S+ξ−x−C),k +
N∑

k=K+1

(x∗−x)πd(S+ξ−x−C),k

=
N∑
i=1

x∗
i −xi

=0 ,

where the inequality is strict if K <N . Using this inequality for the amount of water that poten-

tially needs to be spilled when following x vs. x∗ , we obtain that

N∑
i=1

min{Ci, Si + ξi −x∗
i }=

N∑
i=1

(Si + ξi −x∗
i )− (Si + ξi−x∗

i −Ci)
+

=
N∑
i=1

(Si + ξi −xi)− (Si + ξi−x∗
i −Ci)

+

≥
N∑
i=1

(Si + ξi −xi)− (Si+ ξi −xi −Ci)
+

=
N∑
i=1

min{Ci, Si + ξi−xi}

holds for all Γ such that ξ1 >C1− (S1−x∗
1) , with strict inequality holding for some. □

Proof of Proposition 6. The proof is based on induction, using the value iteration scheme. Start

with a function v0 that satisfies the statement as well as v0(C) = 0 .
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Denote the optimal policy given the state S(2) by x∗
(2) and the corresponding total release by

X∗ =
∑N

i=1 x
∗
(2),i . Consider any feasible release vector x(1) for S(1) with

∑N
i=1 x(1),i = X∗. The

property (6) then carries over to the state vectors (min{C,S(1)+ξi−x(1)}) and (min{C,S(2)+ξi−

x∗
(2)}) for all Γ, where the min operator is applied componentwise. By the induction assumption,

it then follows for all Γ that

vk
(
min

{
C,S(1) + ξ−x(1)

})
≤ vk

(
min

{
C,S(2)+ ξ−x∗

(2)

})
. (EC.13)

Since the value function vk(·) is non-negative and the confidence parameter θ > 0 , (EC.13) directly

translates into

e
vk(min{C,S(1)+ξ−x(1)})

θ ≤ e
vk(min{C,S(2)+ξ−x∗

(2)})
θ . (EC.14)

If strict inequality holds in (6) for the state vectors S(1)−x(1) and S(2)−x∗
(2) , then by Lemma EC.1

it implies

max
i=1,...,N

δi(S
(1)
i −x(1),i)< max

i=1,...,N
δi(S

(2)
i −x∗

(2),i) . (EC.15)

Then

P
[
min

{
C,S(1)+ ξ−x(1)

}
=C

]
= P

[
min

{
C,S(2)+ ξ−x∗

(2)

}
=C

]
+P
[
Γ∈Ω

]
, (EC.16)

where the set

Ω :=

[
max

i=1,...,N
δi(S

(1)
i −x(1),i), max

i=1,...,N
δi(S

(2)
i −x∗

(2),i)

)
has a positive probability. For Γ ≥ maxi=1,...,N δi(S

(2)
i − x∗

(2),i) it holds vk(min{C,S(1) + ξ −

x(1)}) = vk(min{C,S(2) + ξ − x∗
(2)}) = 0 . For all Γ ∈ Ω, on the other hand, it holds that

vk(min{C,S(1)+ ξ−x(1)}) = 0 but vk(min{C,S(2) + ξ−x∗
(2)})> 0 , which means that

e
vk(min{C,S(1)+ξ−x(1)})

θ = 1< e
vk(min{C,S(2)+ξ−x∗

(2)
})

θ . (EC.17)

Combining (EC.14) with (EC.16) and (EC.17), we get

θ log

(
E

[
e

vk(min{C,S(1)+ξ−x(1)})
θ

])
≤ θ log

(
E

[
e

vk(min{C,S(2)+ξ−x∗
(2)})

θ

])
, (EC.18)

with a strict inequality if the inequality in (6) is strict.
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Since
∑N

i=1 x(1),i =
∑N

i=1 x
∗
(2),i , the immediate costs for unsatisfied demand

c
(
x(1)

)
= c
(
x∗
(2)

)
(EC.19)

coincide for x(1) and x∗
(2). By combining (EC.18) and (EC.19), it follows that

vk+1(S
(2)) = c

(
x∗
(2)

)
+ θ log

(
E

[
e

vk(min{C,S(2)+ξ−x∗
(2)})

θ

])

≥ c
(
x(1)

)
+ θ log

(
E

[
e

vk(min{C,S(1)+ξ−x(1)})
θ

])

≥ min
x∈X (S(1))

c (xi)+ θ log

(
E

[
e

vk(min{C,S(1)+ξ−x})
θ

])
= vk+1(S

(1)) ,

(EC.20)

where the inequality is strict if strict inequality holds in (6) with a positive probability. □

Proof of Corollary EC.1. (Follows from the proof of Proposition 6.) Given that: (i) it holds∑
i xi =

∑
i x

∗
i , (ii) the parameter θ is positive, (iii) the logarithm is a positive monotonic function

on [1,∞) , and (iv) its arguments are greater than or equal to one, the assertion is reduced to the

expected values on both sides of the inequality. By Proposition 6, it holds

vθ (min{C,S+ ξ−x∗})≤ vθ (min{C,S+ ξ−x})

almost everywhere and strict inequality holds with positive probability. Together with θ > 0 , this

pathwise inequality for all scenarios and strict inequality for some scenarios then directly imply

the assertion for the expected values. □

Proof of Corollary 1. Follows from Corollary EC.1. □

Proof of Proposition 7. Using the notation introduced in EC.0, conditions (ii) and (iii) in the

statement of the Proposition can be reformulated as follows:

(ii) there is an index K ≤N such that

• for all K < i≤N it holds x∗
πa(δ),i = 0 ;

• ∃ I ⊆ {1, . . . ,K} such that:

—∀i, j ∈ I:

* δπa(δ(S)),i((S−x∗)πa(δ(S)),i) = δπa(δ(S)),j((S−x∗)πa(δ(S)),j);

—∀k ∈ {1, . . . ,K}\I:
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* (S−x∗)πa(δ(S)),k = Smin
πa(δ(S)),k

* δπa(δ(S)),k((S−x∗)πa(δ(S)),k)≤ δπa(δ(S)),i((S−x∗)πa(δ(S)),i) for all i∈ I ;

(iii) there is no other vector x′ satisfying (i) and (ii) for an index K <K ′ ≤N .

For any feasible x′ ̸≡ x∗ with
∑K

i=1 x
′
πa(δ(S)),i =

∑N
i=1 x

′
i =X∗, it follows directly from the proof

of Lemma EC.2 that

N∑
i=1

min{Ci, Si + ξi −x∗
i } ≥

N∑
i=1

min{Ci, Si + ξi−x′
i}

holds almost everywhere and therefore x∗ is favorable by Corollary EC.1. Now con-

sider some feasible x′ with
∑N

i=1 x
′
i = X∗ but

∑K
i=1 x

′
πa(δ(S)),i < X∗. For any inflow Γ ≤

maxi=1,...,K δπa(δ(S)),i((S− x∗)πa(δ(S)),i) , no water needs to be spilled when releasing according to

x∗ and therefore
∑N

i=1min{Ci, Si+ ξi −x∗
i } ≥

∑N
i=1min{Ci, Si + ξi−x′

i} holds. Now suppose

Γ > maxi=1,...,K δπa(δ(S)),i((S − x∗)πa(δ(S)),i) . There is a (nonempty) index set J ⊆ {1, . . . ,K}

such that x′
πa(δ(S)),i < x∗

πa(δ(S)),i for all i ∈ J and x′
πa(δ(S)),i ≥ x∗

πa(δ(S)),i for all i ∈ {1, . . . ,N}\J .

This implies that:

• For each i∈J , water needs to be spilled for both x∗ and x′:∑
i∈J

(
(S+ ξ−x′ −C)πa(δ(S)),i

)+ −
(
(S+ ξ−x∗−C)πa(δ(S)),i

)+
=
∑
i∈J

(x∗−x′)πa(δ(S)),i .

• For each i∈J c := {1, . . . ,N}\J , either both strategies require to spill or only x∗:∑
i∈J c

(
(S+ ξ−x′ −C)πa(δ(S)),i

)+ −
(
(S+ ξ−x∗−C)πa(δ(S)),i

)+ ≥
∑
i∈J c

(x∗−x′)πa(δ(S)),i .

Using the resulting inequality for the sum over all i= 1, . . . ,N , we get

N∑
i=1

min{Ci, (S+ ξ−x∗)i}−min{Ci, (S+ ξ−x′)i}

=
N∑
i=1

(S+ ξ−x∗)i − ((S+ ξ−x∗−C)i)
+− (S+ ξ−x′)i +((S+ ξ−x′ −C)i)

+

=
N∑
i=1

(x′
i −x∗

i )+
N∑
i=1

((S+ ξ−x′ −C)i)
+− ((S+ ξ−x∗−C)i)

+

≥
N∑
i=1

(x′
i −x∗

i )+
N∑
i=1

(x∗
i −x′

i)

= 0 ,
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from which it follows that

N∑
i=1

min{Ci, (S+ ξ−x∗)i} ≥
N∑
i=1

min{Ci, (S+ ξ−x′)i}

also holds for any inflow Γ >maxi=1,...,K δπa(δ(S)),i((S − x∗)πa(δ(S)),i) . By Corollary EC.1, x∗ is

therefore better than x′ also in this case.

The subcondition involving Smin ensures feasibility of x∗. Moreover, if there existed an index

i∈ {1, . . . ,K}\I such that (S−x∗)πa(δ(S)),i >Smin
πa(δ(S)),i , then, using the same argument as above

based on Corollary EC.1, one can construct a better strategy that does satisfy the condition. □

Proof of Proposition 8. The proof is based on a pathwise argument. The initial state is not

limited to S
(N)
i ≡ Ci , the result holds for all states. Let S(1)

0 :=
∑N

i=1S
(N)
0,i . Denote the optimal

release decision for the N -reservoirs system by x(N)(S
(N)
0 ) . Define the corresponding release from

the aggregate reservoir as X(S
(1)
0 ) :=

∑N
i=1 x

(N)
i (S

(N)
0 ) . By construction, X(S

(1)
0 ) is feasible and

the shortage costs for the initial stage coincide: c(X(S
(1)
0 )) = c(

∑N
i=1 x

(N)
i ) .

As for the realized total first-stage inflow ξ
(1)
0 =

∑N
i=1 ξ0,i , we distinguish two cases:

(i) ξ
(1)
0 <C(1)− (S

(1)
0 −X) :

min{C(1), S
(1)
0 −X + ξ

(1)
0 }= S

(1)
0 −X + ξ

(1)
0 ≥

N∑
i=1

min{Ci, S
(N)
0,i −x

(N)
i + ξ0,i} ;

(ii) ξ
(1)
0 ≥C(1)− (S

(1)
0 −X) :

min{C(1), S
(1)
0 −X + ξ

(1)
0 }=C(1) =

N∑
i=1

Ci ≥
N∑
i=1

min{Ci, S
(N)
0,i −x

(N)
i + ξ0,i} .

In both cases, we see that the single, aggregate reservoir ends up at time 1 with at least as much

water as the aggregate amount of water contained in the N -reservoirs system. If S(N)
0 is an unbal-

anced state, then there is a positive probability that the aggregate reservoir ends up with strictly

more water than the N -reservoirs system. At time 1, it is then again feasible to replicate the N -

reservoirs system’s optimal policy and release an amount of X(S
(1)
1 ) :=

∑N
i=1 x

(N)
i (S

(N)
1 ) from the

aggregate reservoir.

The argument applies iteratively along each path of replicated releases and inflow realizations,

until the aggregate reservoir reaches its capacity. Until this event occurs, the accumulated shortage

costs for the two systems coincide, based on identical total releases. By construction, there is

no path where the N -reservoirs system reaches its terminal state before the aggregate reservoir
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exceeds its capacity. If the initial state S
(N)
0 is unbalanced, then for some paths (i.e., with positive

probability), the aggregate reservoir exceeds its capacity at a point in time when the N -reservoirs

system has not reached its terminal state yet.

When replicating the optimal release policy of the N -reservoirs system, the expected total short-

age costs for the aggregate reservoir (until it reaches its capacity) are therefore smaller than or

equal to the expected total shortage costs for the N -reservoirs system (until it reaches its terminal

state). This consequently also applies to the optimal expected costs for the aggregate reservoir,

which proves the assertion. □

Proof of Proposition 9. The bound follows analogously to the proof of Prop. 8. The key is to

observe that along each path of inflow realizations Γt , the N -reservoirs system at each time t

collects at least as much inflow as the virtual aggregated reservoir constructed in this proposition.

By construction of the restricted inflow based on the least favorable state, the given policy for

the aggregated setting is still a proper policy. By Lemma 3.1 of Bertsekas and Tsitsiklis (1989),

the value of the policy evaluation problem (7) for the aggregated reservoir is therefore given by the

unique fix point of (8). □

Proof of Proposition EC.1. Analogous to the proof of Proposition 8, a pathwise argument can

be used. The key is that along each path of inflow realizations Γt , the aggregated reservoir of

Prop. 8 in each step receives at least as much inflow as the aggregated reservoir of Prop. EC.1, and

the latter one receives as least as much inflow as the corresponding N -reservoir system. □

Proof of Lemma EC.3. For any given K ≥ 0 , define

λK(h, y) :=

min{τ−1,K}∑
t=0

zt

(
yt(St+1)h(x(St), St+1)−EP [yt(St+1)h(x(St), St+1)|Ft]

)
and

λ̃K(h, y) :=
K∑
t=0

zt

(
yt(St+1)h(x(St), St+1)−EP [yt(St+1)h(x(St), St+1)|Ft]

)
.

It follows from applying the law of iterated expectation, that E[λ̃K(h, y)|z0, y0] = 0 holds. By the

law of total probability, this also translates into E[λK(h, y)|z0, y0] = 0 for any given K . It remains

to show that this also holds in the limit as K →∞ .
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First, notice that the end of a cycle has finite expectation:

E[τ ] =
∞∑
n=1

n ·P[Γ≥ max
i=1,...,N

δi(Sn)] ·
n−1∏
t=1

P[Γ< max
i=1,...,N

δi(St)]≤
∞∑
n=1

n · cn−1
ξ =

1

(cξ − 1)2
<∞ ,

(EC.21)

since cξ := P[Γ<maxi=1,...,N δi(S
min)}] is bounded away from 1 by Assumption 1.

Define

Λn :=
n−1∑
t=0

zt (yt(St+1)h (x(St), St+1)−EP [yt(St+1)h(x(St), St+1)|Ft])

to consider λ(h, y) as a stopped stochastic process Λ= (Λn)n≥1 , stopped at time τ . Then Λn and

zn are measurable with respect to the sigma algebra Fn := σ(Sn, yn−1) . It follows directly that Λ

is a martingale:

EP[Λn+1|Fn] =EP [Λn+ zn · (yn(Sn+1)h(Sn+1)−EP [yn(Sn+1)h(Sn+1)|Fn])|Fs]

= Λn+ zn · (EP [yn(Sn+1)h(Sn+1)|Fn]−EP [yn(Sn+1)h(Sn+1)|Fn]) = Λn .

(EC.22)

Since h(·, ·) is bounded and yt, zt ∈ (0,1] , using the triangle inequality, it follows that the incre-

ments of λ are uniformly bounded:

|Λn+1(ω)−Λn(ω)| ≤ |yn(Sn+1(ω))h(x(Sn(ω)), Sn+1(ω))|+ |EP [yt(Sn+1)h(x(Sn), Sn+1)|Fn]|

≤ 2ch .

(EC.23)

Given (EC.21), (EC.22), and (EC.23), it follows from Doob’s Optional Stopping Theorem that

E[λ(h, y)] =E[Λτ ] =E[Λ1] = 0 . □


