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ABSTRACT

This paper studies the costs of following single-factor exercise strategies
for American swaptions when the term structure is actually driven by
multiple factors. By their nature, single-factor models imply myopic
exercise strategies since they assume perfectly correlated interest rate
changes. Using a multi-factor string model of the term structure fitted to
swaptions and caps data, we find that even the best single-factor exercise
strategy can be very suboptimal. Based on ISDA estimates of swaption
notional amounts outstanding, the total present value costs of following
single-factor strategies could be as large as several billion dollars.



1. INTRODUCTION

Interest rate swaps have become one of the most important sectors in the global
fixed income markets. The International Swaps and Derivatives Association (ISDA)
estimates that the notional amount of interest rate swaps outstanding at the end of
1997 was $22.3 trillion, more than four times the $5.5 trillion notional of Treasury
debt outstanding. Given the size of the swap market, it is not surprising that options
to enter into swaps, or to cancel existing swaps, represent one of the most-widely-
used classes of fixed income derivatives. Known as swap options or swaptions, the
total notional amount of these derivatives outstanding at the end of 1997 was nearly
$1.7 trillion, more than ten times the $15 billion notional of all Chicago Board of
Trade Treasury note and bond futures options combined.

The importance of the swaptions market derives from the key role that swaptions
play in corporate finance. Industry sources estimate that more than 50 percent of
new agency and corporate debt issues are immediately swapped from fixed into
floating or from floating into fixed. Debt issuers that swap their debt typically want
the right to cancel the swap at future points in time. Similarly, debt issuers that
do not immediately swap their debt often want the right to enter into a prespecified
swap at later dates. Thus, swaptions arise as a natural outgrowth of efforts by debt
issuers to preserve their flexibility throughout the financing cycle. Because of the
long maturity of many debt issues, swaptions are often exercisable over horizons
that span decades. Intuitively, swaptions can be viewed as calls or puts on coupon
bonds, and our results are directly applicable to callable and puttable bonds. As with
callable and puttable debt issues, a high percentage of swaptions have American-style
exercise features.

Despite their importance, however, there are few areas in Finance where there is
a larger divergence between theory and practice than for American-style swaptions.
On one hand, there is an extensive and well established body of research showing
that the term structure is driven by multiple factors.! On the other hand, most Wall
Street firms exercise their American-style swaptions on the basis of simple single-
factor term structure models. If term structure dynamics are determined by multiple
factors, however, then exercise strategies implied by single-factor models may be far
from optimal, resulting in significant erosion of the value of the swaption to the
optionholder.

The reason for this suboptimality stems from the perfect correlation of points
along the term structure inherent in single-factor models. Because of this perfect

For example, see Brown and Dybvig (1986), Stambaugh (1988), Litterman and
Scheinkman (1991), Longstaff and Schwartz (1992), Chen and Scott (1993), Gibbons
and Ramaswamy (1993), Knez, Litterman, and Scheinkman (1994), Pearson and
Sun (1994), Balduzzi, Das, Foresi, and Sundaram (1996), Dai and Singleton (1999),
Piazzesi (2000), and Longstaff, Santa-Clara, and Schwartz (2000).



correlation, the swaption can be perfectly hedged with only the underlying swap and
the decision to exercise depends myopically on only the current underlying swap value
which becomes a sufficient statistic for term structure movements. In a multi-factor
framework, however, the optimal exercise or stopping rule depends not only on the
current value, but also on forward values of the underlying swap. By basing exercise
decisions on only a subset of the relevant term structure information, single-factor
stopping rules cannot generally be optimal.

Another way of seeing this is by noting that the optimal exercise boundary is
a multi-dimensional surface when the term structure is driven by multiple factors.
By its nature, however, a single-factor model forces the exercise boundary to be
one-dimensional. In general, the multi-dimensional optimal exercise surface cannot
be well approximated by the one-dimensional exercise boundary implied by a single-
factor model. The same applies to the dynamic replication of the swaption. A single-
factor hedging strategy cannot replicate an American swaption in a multi-factor
framework. It is important to observe that this problem is inherent in the topology
of single-factor models. No matter how well a single-factor model is parameterized
to match the cross section of market option prices, it still implies perfect correlation
and fails to capture the times series properties or dynamics of the term structure.
The dynamics of the term structure, however, are fundamental in determining the
value of American swaptions because of the intertemporal nature of the optimal
stopping problem. The bottom line is that if a swaption holder uses a single-factor
model to make exercise decisions, the present value A of cash flows realized will be
less than or equal to the present value B of cash flows realized by following the
optimal multi-factor exercise strategy.

While this latter point may seem obvious, it has been the source of some re-
cent confusion among practitioners. The reason for this stems from an interesting
apparent paradox. Specifically, if the holder of an American swaption uses a single-
factor model to value the option as well as to make exercise decisions, the value
implied by the single-factor model X may occasionally exceed the correct value B
given by the multi-factor model.?2 Thus, the swaption holder could be led to be-
lieve that the swaption was actually more valuable using a single-factor model. The
paradox is easily resolved, however, by recognizing that because the dynamics of
the single-factor model are misspecified, the American swaption value X implied by
the single-factor model need not equal the present value A of the actual cash flows
obtained by following the single-factor exercise strategy in the real world. Hence, the
American swaption value X implied by a misspecified single-factor term structure
model is an illusionary number which can be a severely biased estimate of the present
value A of actual cash flows realized from following the single-factor strategy. Thus,
comparisons between X and B are meaningless.

2As examples, see the recent papers by Andersen and Andreasen (2000) and Brace
and Womersley (2000).



We illustrate this point with several simple examples. In the first, an investor
has a two-period American exchange option but mistakenly believes one of the two
asset prices is constant. The investor calibrates a single-factor model to match
exactly the market prices of European exchange options at each date. This calibrated
single-factor model values the American exchange option at 1.37. It is easily shown,
however, that following the single-factor strategy over time results in cash flows that
have a present value of only 1.13, which is about 82 percent as much as the investor
believes the option is worth. In the second example, we use a two-factor binomial
tree to value options on a coupon bond. We then fit a time-inhomogeneous single-
factor binomial tree to match the values of the European options throughout the
tree. The calibrated single-factor tree implies that the value of an American option
on the coupon bond is .514. Following the single-factor exercise strategy over time,
however, results in cash flows that have a present value of .563, which is nearly ten
percent higher than the value implied by the single-factor model. These two examples
demonstrate that the American option value X implied by a misspecified single-factor
model can be biased in either direction. This bias is particularly insidious since an
investor using a single-factor model may not even be aware that the present value A
of the cash flows he realizes does not equal the value X given by the model since he
only observes ex post realizations.

This paper studies the costs of following single-factor exercise strategies for
American-style swaptions in a realistic multi-factor term structure framework. In
modeling interest rate dynamics, we use a multi-factor string model of the term
structure similar to Santa-Clara and Sornette (2000), Longstaff and Schwartz (2000),
and Longstaff, Santa-Clara, and Schwartz (2000). String models have the important
advantages of being easily calibrated and providing a rich multi-factor description
of the dynamic behavior of the term structure. Furthermore, since the string model
specifies the dynamics of the entire curve, it is straightforward to accurately value
American-style swaptions in this framework using the least squares Monte Carlo
(LSM) technique of Longstaff and Schwartz.

Our approach consists of first fitting a time-homogeneous string model to sets
of market prices for European swaptions and interest rate caps. Following Knez,
Litterman, and Scheinkman (1994), Piazzesi (2000), Longstaff, Santa-Clara, and
Schwartz (2000) and others who find evidence of four factors in term structure dy-
namics, we allow the correlation matrix of forward rates to be of rank four. We
then simulate paths of the term structure using the fitted four-factor string model.
Finally, applying the LSM algorithm to the simulated paths, we compare the values
of American-style swaptions obtained using the best single-factor exercise strategy
with those obtained using the optimal four-factor strategy.

The results have many important implications for swaptions markets. We show
that even the best single-factor strategy can be very suboptimal. For many common
American swaption structures, the present value loss from following a single-factor
strategy rather than the optimal four-factor strategy can be as large as 10 to 20 cents



per $100 notional, or 5 to 20 percent of the American exercise premium. Based on
ISDA estimates of swaption notional amounts outstanding, the total present value
cost to swaptionholders of following single-factor exercise strategies could be as large
as several billion dollars.

To provide insights into the properties of optimal exercise strategies in a multi-
factor framework, we contrast them with the single-factor strategy. The optimal
multi-factor strategy differs fundamentally from the single-factor strategy in three
ways. First, the multi-factor strategy results in the swaption being exercised a higher
percentage of the time. Second, the average amount realized when the swaption
is exercised is greater under the multi-factor strategy than under the single-factor
strategy. Third, the multi-factor strategy typically results in the swaption being
exercised later than under the single-factor model, although earlier exercise also
occurs frequently. Thus, there are no simple rules of thumb which could be used to
improve the performance of a single-factor exercise strategy.

The remainder of this paper is organized as follows. Section 2 provides a brief
introduction to the swaptions market. Section 3 presents the string model of the term
structure. Section 4 describes the parameterization of the string model. Section 5
discusses the numerical approach and considers the effects of optimal and suboptimal
exercise strategies on American swaption valuation. Section 6 presents the results
about the costs of following suboptimal strategies. Section 7 summarizes the results
and makes concluding remarks.

2. AN INTRODUCTION TO SWAPTIONS

This section provides a brief introduction to the swaptions market. We first consider
how the market is structured. We then describe the various types of swaptions and
their characteristics. Finally, we discuss the major valuation models used in practice.

2.1 The Swaptions Market.

The inception of the interest rate swap market in the early 1980s also led to the
creation of the swaptions market. The dramatic growth in the swap market has
resulted in swaptions becoming one of the most important fixed income derivative
products. Swaptions play a unique role in fixed income markets since they are
often exercisable over extended horizons; no other fixed income derivatives provide
investors with such long-dated optionality.

Primary and secondary markets for swaps and swaptions are made by a world-
wide network of swap dealers. Most of these dealers are members of ISDA which is
an independent self-regulatory organization that has developed standards for docu-
mentation, contractual terms, dispute reconciliation, and other aspects of the swap
business. Currently, there are nearly 200 primary members of ISDA. Swap deal-
ers trade as principals by either taking the other side of customer transactions or



by entering into swaps with other dealers. Since swaps and swaptions are contrac-
tual obligations rather than securities, a significant amount of legal infrastructure
is needed before an entity can obtain swap lines and enter into swaps with dealers.
To minimize the amount of legal work involved, many swap dealers trade only with
counterparties with whom a standard ISDA master swap agreement has been negoti-
ated. These master swap agreements apply to all of the swaps executed between the
two counterparties and address such issues as the rights of offset in the event that
one of the counterparties defaults on a specific swap.® The swap market is highly
liquid and bid /ask spreads in the U.S. market are often a fraction of a basis point.

The dealer market is intermediated by a network of brokers who do not take po-
sitions for their own account but facilitate trading by providing a degree of anonymity
for dealers wishing to trade with other dealers. This function is particularly complex
because of the contractual nature of swaps and swaptions. For example, brokers face
the challenge of arranging transactions between counterparties who are unknown
to each other, but who may have credit exposure to the other counterparty once
the transaction is executed. In addition, adverse selection problems are particularly
acute since most active participants in these markets are large organizations with
significant private information about future trading demands and client financing
needs.*

2.2 Swap Characteristics.

The underlying instrument for a swaption is an interest rate swap. In a standard
swap, two counterparties agree to exchange a stream of cash flows over some specified
period of time. Omne counterparty receives a fixed annuity and pays the other a
stream of floating cash flows tied to the three-month Libor rate. Counterparties are
identified as either receiving fixed or paying fixed in the swap. Although principal
is not exchanged at the end of a swap, it is often more intuitive to think of a swap
as involving a mutual exchange of $1 at the end of the swap. From this perspective,
the cash flows from the fixed leg are identical to those from a bond with coupon rate
equal to the swap rate, while the cash flows from the floating leg are identical to
those from a floating rate note. Thus, a swap can be viewed as exchanging a fixed
rate coupon bond for a floating rate note.’

3A number of recent papers consider the effects of counterparty default risk in the
valuation of interest-rate swaps. For example, see Solnik (1990), Sundaresan (1991),
Cooper and Mello (1991), Rendleman (1992), Abken (1993), Sorensen and Bollier
(1994), Hull and White (1995), Jarrow and Turnbull (1995), Li (1995), Duffie and
Huang (1996), Jarrow, Lando, and Turnbull (1997), and Huge and Lando (1998).

4There is an extensive literature addressing the effects of asymmetric information
and adverse selection on financial markets. Important examples include Glosten
and Milgrom (1985), Kyle (1985), Admati and Pfleiderer (1988), and Brennan and
Subrahmanyam (1996).

SFor discussions about the economic role that interest-rate swaps play in finan-
cial markets, see Bicksler and Chen (1986), Turnbull (1987), Smith, Smithson, and
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At the time a swap is initiated, the coupon rate on the fixed leg of the swap
is specified. Intuitively, this rate is chosen to make the present value of the fixed
leg equal to the present value of the floating leg. To illustrate how the fixed rate is
determined, designate the current date as time zero, the final maturity date of the
swap as time 7', and let D(¢, N) denote the value at time ¢ of a discount bond with
arbitrary maturity N. The fixed rate at which a new swap with maturity 7" can be
executed is known as the constant maturity swap rate and we denote it by F'(0,0,7T),
where the first argument refers to time zero, the second argument denotes the start
date of the swap which is time zero for a standard swap, and T is the final maturity
date of the swap. Once a swap is executed, then fixed payments of F'(0,0,7")/2 are
made semiannually at times .50,1.00,1.50,...,7 — .50, and T'. Floating payments
are made quarterly at times .25,.50,.75,...,T — .25, and T and are equal to d/360
times the three-month Libor rate at the beginning of the quarter, where d is the
number of days during the quarter. This feature is termed setting in advance and
paying in arrears. Abstracting from credit issues, a floating rate note paying three-
month Libor quarterly must be worth par at each quarterly Libor reset date. Since
the initial value of a swap is zero, the initial value of the fixed leg must also be worth
par. Setting the time-zero values of the two legs equal to each other and solving for
the swap rate gives

(1)

F(0,0,T) = 2 [L(OT)] ,

A4(0,0,7)

where A(0,0,7) = 21221 D(0,i/2) is the present value of an annuity with first pay-
ment six months after the start date and final payment at time 7. Swap rates are

continuously available from a wide variety of sources for standard swap maturities
such as 2, 3, 4, 5, 7, 10, 12, 15, 20, 25, and 30 years.

For many swaptions, the underlying swap has a forward start date. In a forward
swap with a start date of 7, fixed payments are made at time 7 + .50, 7 + 1.00, 7 +
1.50,...,T — .50, and T and floating rate payments are made at times 7 + .25, 7 +
50, 7+.75,...,T—.25, and T. At the start date 7, the value of the floating leg equals
par. Discounting this time-7 value back to time zero implies that the time-zero value
of the floating cash flows is D(0, 7). Since the forward swap has a time-zero value of
zero, the time-zero value of the fixed leg must also equal D(0, 7). This implies that
the forward swap rate F'(0,7,7) must satisfy

D(0,7) — D(0,7)
A0, 7,T)

F(0,7,T) =2 (2)

Wakeman (1988), Wall and Pringle (1989), Macfarlane, Ross, and Showers (1991),
Sundaresan (1991), Litzenberger (1992), Sun, Sundaresan, and Wang (1993), and
Gupta and Subrahmanyam (2000).



After a swap is executed, the coupon rate on the fixed leg may no longer equal
the current market swap rate and the value of the swap can deviate from zero. Let
V(t,7,T,c) be the value at time ¢ to the counterparty receiving fixed in a swap with
forward start date 7 > t and final maturity date 7', where the coupon rate on the
fixed leg is c. The value of this forward swap is given by

2(T—7)
V(t,7,T,c) = g Z D(t,7 +i/2) + D(t,T) — D(t, ), (3)

where the first two terms in this expression represent the value of the fixed leg of the
swap, and the third term is the present value of the floating leg which will be worth
par at time 7. For ¢ > 7, the swap no longer has a forward start date and the value
of the swap on semiannual fixed coupon payment dates is given by the expression

2(T—t)
Vt,r,T,c) = g > D(t,r+i/2)+D(t,T) - 1. (4)
=1

Note that in either case, the value of the swap is just a linear combination of zero-
coupon bond prices.

2.3 European Swaptions.

There are two basic types of European swaptions. The first is the option to enter a
swap and receive fixed. For example, let 7 be the expiration date of the option, ¢
be the coupon rate on the swap, and 71" be the final maturity date on the swap. The
holder of this option has the right at time 7 to enter into a swap with a remaining
term of T' — 7 and receive the fixed annuity of c¢. Since the value of the floating leg
will be par at time 7, this option is equivalent to a call option on a bond with a
coupon rate of ¢ and a remaining maturity of 7'— 7 where the strike price of the call
is $1. Alternatively, this can be viewed as a derivative with payoff at time 7 equal to
max (0, V (7, 7,T,c)) This option is generally called a 7 into T'— 7 receivers swaption,
where 7 is the maturity of the option and T'— 7 is the tenor of the underlying swap.
This swaption is also known as a 7 by T receivers swaption. Note that if the option
holder is paying fixed at rate ¢ in a swap with a final maturity date of 7', then
exercising this option has the effect of canceling the original swap at time ¢ since the
two fixed and two floating legs cancel each other out. Observe, however, that when
the option is used to cancel the swap at time 7, the current fixed for floating coupon
exchange is made first.

The second type of swaption is the option to enter a swap and pay fixed, and
the cash flows associated with this option parallel those described above. An option
which gives the option holder the right to enter into a swap at time 7 with final
maturity date at time 71" and pay fixed is generally termed a 7 into T'—7 or a 7 by T
payers swaption. Again, this option is equivalent to a put option on a coupon bond
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where the strike price is the value of the floating leg at time 7 of $1. Alternatively,
the payoff at time 7 can be expressed as max (0, —V(r,7,T, c)) A 7into T — T payers
swaption can be used to cancel an existing swap with final maturity date at time 7'
where the option holder is receiving fixed at rate c.

Interest rate caplets can also be viewed as special cases of European swaptions.
Many financial market participants enter into financial contracts where they pay or
receive cash flows that are tied to some floating rate such as Libor. To hedge the
risk created by the variability of the floating rate, firms often use interest rate caps
or floors. A cap gives its holder a series of European call options or caplets on the
Libor rate, where each caplet has the same strike price as the others, but a different
expiration date. Similarly, floors represent a portfolio of individual floorlets or put
options on the Libor rate. Note that the six-month Libor rate can be expressed as
F(t,7,7 + /2). Because of this, it is easily shown that the payoff on a caplet on
the six-month Libor rate can be expressed as max(0, -V (7, 7,7 + 1/2,¢)).6 Thus,
caps on six-month Libor can be viewed as simple portfolios of European options on
six-month swaps.”

From the symmetry of the European payoff functions, it is easily shown that a
long position in a 7 into 7" — 7 receivers swaption and a short position in a 7 into
T — 1 payers swaption with the same coupon have the same payoff as receiving fixed
in a forward swap with start date 7 and coupon rate c. Specifically,

V(r,7,T,c) = max(0,V(r,7,T, c)) —max(0, =V (7,7,T,¢c)). (5)

A standard no-arbitrage argument gives the receivers/payers parity result that at
time ¢, 0 < t < 7, the value of the forward swap must equal the value of the receivers
swaption minus the value of the payers swaption. When the coupon rate c is also
equal to the forward swap rate F(0,7,T), the forward swap is worth zero and the
receivers and payers swaptions have identical values. In this case, the swaptions are
said to be at the money forward.

2.4 American Swaptions.

Although there are a number of different variations, the most common type of
American-style swaption is the T noncall 7 structure. A T noncall 7 receivers swap-
tion gives the option holder the right to enter into a swap and receive fixed at any

6Libor is quoted on an actual/360 basis. For notational convenience, we do not
adjust the swaption valuation formulas in the text for this daycount convention. In
the computations, however, we explicitly adjust for the Libor daycount convention.
For a discussion of caps and floors, see Longstaff, Santa-Clara, and Schwartz (2000).

"For many currencies, the market convention is for the cap to be on the three-month
Libor rate. In some markets, however, caps may be on the six-month Libor rate.
For example, Yen caps with maturities greater than one year are usually on the
six-month Libor rate.



of the fixed coupon payment dates 7,7 + .50, 7 + 1.00,...,7 — 1.00, and 7" — .50.
Similarly, a T noncall 7 payers swaption gives the option holder the right to enter
a swap and pay fixed at the same coupon payment dates. As before, either of these
structures can be used to cancel existing swaps at any of these coupon payment dates
after making the coupon exchange for that payment date. Since the underlying swap
terminates at time 7', the value of an American swaption converges to zero at time
T. This implies that an American swaption should be exercised at time T — .50 if it
is in the money. Hence, the value of an American swaption is identical to that of an
equivalent European swaption at any time after the second to last coupon payment
date for the underlying swap. These options are sometimes known as Bermuda swap-
tions, deferred American swaptions, or discrete American swaptions; for simplicity,
we refer to them as American-style swaptions.

As with traditional American options, the value of an American-style swaption
is greater than or equal to the value of its European counterpart. Furthermore,
consider a standard 7T noncall 7 structure. Exercise dates for this swaption range
from time 7 to time T —.50. For each of these exercise dates, we can find a European
swaption with the same exercise date on the same underlying swap. Designate the set
of these European swaptions as the corresponding European swaptions. Standard no-
arbitrage results can be used to show that the value of the American-style swaption
must be greater than or equal to the maximum of the values of all corresponding
European swaptions.

2.5 Market Valuation Models.

As in most option markets, the convention in the European swaptions market is to
quote prices in terms of their implied volatility relative to a standard pricing model.
In trading European swaptions, prices are quoted as implied volatilities relative to
the Black (1976) model as applied to the forward swap rate. To illustrate this,
consider a 7 into T' — 7 European receivers swaption where the fixed coupon rate
equals ¢. Under the assumption that the forward swap rate follows a lognormal
process under the pricing measure, the Black model implies that the value of this
swaption at time zero is

%A(O, 7, T) [F(0,7,T) N(d) — ¢ N(d—ov7)], (6)
where

In(F(0,7,T)/c) + o7 /2

o\T ’

and where N(-) is the cumulative standard normal distribution function and o is
the volatility of the logarithm of the forward swap rate.® The value of the payers

d =

8Smith (1991) describes the application of the Black (1976) model to European
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swaption is given by the parity result. In the special case where the European
receivers swaption is at the money forward, ¢ = F(0,7,7T") and equation (6) reduces
to

(D(0,7) — D(0,T)) lN ("27) - N (-"f)} . (7)

Since this receivers swaption is at the money forward, the value of the corresponding
payers swaption is identical. When an at-the-money forward swaption is quoted at
an implied volatility of o, the actual price paid by the purchaser of the swaption is
given by substituting o into equation (7).

Although there is no market standard for pricing American swaptions, extensive
conversations with numerous brokers and dealers indicate that most Wall Street firms
use some form of a single-factor Black, Derman, and Toy (1990) model in valuing
their swaption positions and making exercise decisions. For example, the Black-
Derman-Toy model is the default valuation model for American-style swaptions in
the widely-used Bloomberg system.” In the Black-Derman-Toy model, the short-term
rate r follows the dynamic process

% = (u(t) +s'(t)/s(t) Inr) dt + s(t) dZ, (8)

where p(t) is a drift function, s(t) is a volatility function, and Z is a standard
Brownian motion. This model is calibrated by fitting the drift function w(¢) and the
volatility function s(¢) to match both the initial term structure and some subset of
European swaption volatilities. Often s(t) is chosen to be constant, and the model is
calibrated to match the price of the 7 into T' — 7 European swaption corresponding
to the first exercise date of the American-style swaption.?

3. A STRING MODEL OF THE TERM STRUCTURE

In a series of recent papers, Kennedy (1994, 1997), Santa-Clara and Sornette (2000),
Goldstein (2000), Longstaff, Schwartz, and Santa-Clara (2000), and Longstaff and

swaptions. Jamshidian (1996) and Brace, Gatarek, and Musiela (1997) demonstrate
that the Black (1976) model for swaptions can be derived within an internally-
consistent no-arbitrage model of the term structure.

90ther models that are used in practice include Black and Karasinski (1991) and
Hull and White (1990). Both of these are single-factor models of the short-term rate
and are closely related to the Black-Derman-Toy model.

10The constant volatility version of the Black-Derman-Toy model is designated the
lognormal model in the Bloomberg system.
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Schwartz (2000) model the evolution of the term structure as a stochastic string. In
this approach, each point along the term structure is a distinct random variable with
its own dynamics. Each point, however, is correlated with the other points along the
term structure. Santa-Clara and Sornette show that this approach generalizes the
Heath, Jarrow, and Morton (1992) framework while preserving its intuitive structure
and appeal. By its nature, however, a string model has the advantage of being
easier to calibrate to market data. Motivated by this literature, we develop a time-
homogeneous string model of the term structure for the purpose of valuing interest
rate options such as swaptions.

In this model, we take the six-month Libor forward rates out to 15 years,
F, = F(t,T;,T; + 1/2), T; = i/2, i = 1,2,...,29, to be the fundamental vari-
ables driving the term structure. Similarly to Black (1976), we assume that the
risk-neutral dynamics for each forward rate are given by

where «; is an unspecified drift function, o; is a deterministic volatility function,
dZ; is a standard Brownian motion specific to this particular forward rate, and
t < T;.1' Note that while each forward rate has its own dZ; term, these dZ; terms
are correlated across forwards. The correlation of the Brownian motions together
with the volatility functions determine the covariance matrix of forwards 3. This is
different from traditional implementations of multi-factor models which use several
uncorrelated Brownian motions to shock each forward rate. This seemingly minor
distinction actually has a number of important implications for the estimation of
model parameters from market data.

To model the covariance structure among forwards in a parsimonious but eco-
nomically sensible way, we make the assumption that the covariance between dF;/F;
and dF};/F; is completely time homogeneous in the sense that it depends only on
T; —t and T; —t. Although the assumption of time homogeneity imposes addi-
tional structure on the model, it has the advantage of being more consistent with
traditional dynamic term structure models in which interest rates are determined
by the fundamental state of the economy. In addition, time homogeneity facilitates
econometric estimation because of the stationarity of the model’s specification. Fur-
thermore, time homogeneity is intuitively appealing from the perspective of reflecting
the fundamental economics of the problem. Because our ultimate objective is to ap-
ply the model to discretely-observed data, we make the simplifying assumption that
these covariances are constant over six-month intervals. With these assumptions, the

11We assume that the initial value of Fj is positive and that the unspecified o;
terms are such that standard conditions guaranteeing the existence and uniqueness
of a strong solution to equation (9) are satisfied. These conditions are described in
Karatzas and Shreve (1988, Chapter 5). In addition, we assume that «; is such that
F; is non-negative for all ¢t < Tj;.
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problem of capturing the covariance structure among forwards reduces to specifying
a 29 by 29 time-homogenous covariance matrix 3.

One of the key differences between this string model and traditional multi-factor
models is that our approach allows the parameters of the model to be uniquely iden-
tified from market data. For example, if there are N forward rates, the covariance
matrix ¥ has only N(N + 1)/2 distinct parameters. Thus, market prices of fixed-
income derivatives contain information on at most N (N + 1)/2 covariances, and no
more than N (N +1)/2 parameters can be uniquely identified from the market data.
Since the string model is described by ¥, the parameters of the model are economet-
rically identified. In contrast, a typical implementation with constant coefficients of
a traditional N-factor model of the form

dF; = o, Fidt + op FidZ1 + 0o F;dZs + ...+ oinFidZ N, (10)

where the Brownian motions are uncorrelated, would require N parameters for each
of the N forwards, resulting in a total of N? parameters. Given that there are only
N(N+1)/2 < N? separate covariances among the forwards, the general specification
in equation (10) cannot be identified using market information unless additional
structure is placed on the model. Similar problems also occur when there are fewer
factors than forwards. By specifying the covariance or correlation matrix among
forwards directly, string models avoid these identification problems. String models
also have the advantage of being more parsimonious. For example, up to N x K
parameters would be needed to specify a traditional K-factor model. In contrast,
only K (K + 1)/2 parameters would be needed to specify a string model with rank
K.

Although the string is specified in terms of the forward Libor rates, it is much
more efficient to implement the model using discount bond prices. By definition,

[ DT
=2 per vy Y- (11)

Thus, the forward rates F; can all be expressed as functions of the vector of discount
bond prices with maturities .50,1,...,15. Conversely, these discount bond prices
can be expressed as functions of the string of forward rates, assuming that standard
invertibility conditions are satisfied.!? Applying It6’s Lemma to the vector D of
discount bond prices gives

dD=r Ddt+J ' o FdZ, (12)

12The primary condition is that the determinant of the Jacobian matrix for the map-
ping from discount bond prices to forward swap rates be non-zero. If this condition
is satisfied, local invertibility is implied by the Inverse Function Theorem.
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where 7 is the spot rate, o F' dZ is the vector formed by stacking the individual
terms o;(t,T;) F; dZ; in the forward rate dynamics in equation (9), and J~! is the
inverse of the Jacobian matrix for the mapping from discount bond prices to forward
rates. Since each forward depends only on two discount bond prices, this Jacobian

matrix has the following simple banded diagonal form.!3
[ — o0 0 0 e 0 0 0 ]
D(12.5O) - 21:5((11.'28)) 0 s 0 0 0
0 D(22.00) - 2DI2)((21..(§(()))) T 0 0 0
J =
0 0 0 T D(1421.50) o 2D12)((11:.§(()))) 0
|0 0 0 o0 D —PRse

The drift term 7D in equation (12) does not depend on the unspecified drift term «;
in equation (9). This is because discount bonds are traded assets in this complete
markets setting and their expected return equals the spot rate under the risk-neutral
measure. This approach allows us to avoid specifying the complicated drift term «,
making the model much easier to parameterize and simulate than formulations based
entirely on forward rates. Again, since our objective is a discrete-time implementa-
tion of this model, we make the simplifying assumption that r equals the yield on
the shortest-maturity bond at each time period.!*

The dynamics for D in equation (12) provide a complete specification of the
evolution of the term structure. This string model is arbitrage free in the sense that
it fits the initial term structure exactly and the expected rate of return on all discount

13For notational simplicity, discount bonds are expressed as functions of their ma-
turity date in the Jacobian matrix. The Jacobian matrix represents the derivative
of the 29 forwards F'59, F1.00, F1.50, --., F14.50 With respect to the discount bond
prices D(1.00), D(1.50), D(2.00), ..., D(15.00). Since o(T; —t) = 0 for T; < .50,
D(.50) is not stochastic and does not affect the diffusion term in equation (12).

14This discretization assumption has little effect on the results. This approach gives
values for European swaptions that are virtually identical to those implied by their
closed-form solutions.
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bonds equals the spot rate under the risk-neutral pricing measure. The model can
also be easily extended to allow other interest rate dynamics than those given in
equation (9). For example, we have also implemented the string model for the case
where forward rates follow a constant elasticity of variance (CEV) process similar to
Chan, Karolyi, Longstaff, and Sanders (1992). The results from this specification are
virtually the same as those shown in this paper.!® To complete the parameterization
of the model, we need only specify ¥ in a way that matches the market prices of
interest rate options or the historical behavior of forward rates.

4. PARAMETERIZING THE MODEL

Rather than specifying the covariance matrix 3 exogenously, our approach is to solve
for the implied matrix ¥ that best fits the market prices of European swaptions and
interest rate caps. The data used in estimating ¥ consists of midmarket broker
quotations for European swaptions and caps as reported by the Bloomberg system
at the close of trading on July 2, 1999. These quotations are shown in Table 1.6

In solving for the implied covariance matrix, we note that a covariance matrix
must be positive definite (or at least positive semidefinite) to be well defined. This
means that care must be taken in designing the algorithm by which the covariance
matrix is implied from the data to insure than this condition is satisfied. Standard
results in linear algebra imply that a matrix is positive definite if, and only if, all
eigenvalues of the matrix are positive.

Motivated by this necessary and sufficient condition, we use the following pro-
cedure to specify the implied covariance matrix. First, we estimate the historical
correlation matrix of percentage changes in forward rates H from a time series of for-
ward rates. Specifically, we obtain month-end Libor and swap rates from Bloomberg
for the period from January 1989 to June 1999. Using a cubic spline, we estimate
discount bond prices for each date and compute forward rates. We then estimate

15A more general approach would be to incorporate stochastic volatility into the
string model framework by allowing the volatility parameters o; to vary over time
according to some stochastic process. This would be consistent with the growing
body of empirical evidence documenting that interest-rate volatility is stochastic.
For example, see Brenner, Harjes, and Kroner (1996), Anderson and Lund (1997),
Koedijk, Nissen, Schotman, and Wolff (1997), and Ball and Torous (1999). In ad-
dition, time series of both implied cap and swaption volatilities display persistent
variation in their values; see Longstaff, Santa-Clara, and Schwartz (2000). Although
the extension to stochastic volatility is beyond the scope of this paper, we note that
the string model framework can easily accommodate stochastic volatility by either
appending the dynamics for individual o; terms or by introducing additional factors
driving common variation in the o; terms.

16We also replicate our results using data from a number of other dates during 1997,
1998, and 1999. The results are virtually the same as those reported.
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the sample correlation matrix from these forward rates.'”

We then decompose the historical correlation matrix into its spectral representa-
tion H = UAU’, where U is the matrix of eigenvectors and A is a diagonal matrix of
eigenvalues. Finally, we make the identifying assumption that the implied covariance
matrix is of the form ¥ = UWU’, where V¥ is a diagonal matrix with non-negative
elements. This assumption places an intuitive structure on the space of admissible
implied covariance matrices.'® Specifically, if the eigenvectors are viewed as factors,
then this assumption is equivalent to assuming that the factors that generate the
historical correlation matrix also generate the implied covariance matrix, but that
the implied variances of these factors may differ from their historical values. Viewed
this way, the identification assumption is simply the economically intuitive require-
ment that the market price interest rate options based on the factors which drive
term structure movements.

Given this specification, the problem of finding the implied covariance matrix
reduces to solving for the implied eigenvalues along the main diagonal of ¥ that best
fit the market data. Rather than estimating a full diagonal of implied eigenvalues,
however, we estimate only four and set the remaining eigenvalues equal to zero. Thus,
we restrict the implied covariance matrix to a four-factor model. This is motivated
by the recent evidence of Longstaff, Santa-Clara, and Schwartz (2000) documenting
that the implied covariance matrix for European swaptions is of rank four. This
is also consistent with the extensive empirical literature on the factor structure of
term structure movements that generally finds evidence of three to four statistically
significant factors.!?

We solve for the implied eigenvalues by standard numerical optimization where
the objective function is the root mean squared error (RMSE) of the percentage
differences between the market price and the string model price based on 10,000
simulations. In simulating correlated Brownian motions, we use antithetic variates
to reduce simulation noise. The time homogeneity of the model is implemented in
the following way. During the first six-month simulation interval, the full 29 by 29
versions of the matrices 2 and J are used to simulate the dynamics of the 29 forward

1"We implement this procedure using the historical correlation matrix rather than
the covariance matrix to simplify the scaling of implied eigenvalues. We have also
implemented this procedure using the historical covariance matrix. Not surprisingly,
the eigenvectors from the historical covariance matrix are very similar to those ob-
tained from the historical correlation matrix.

18This assumption is equivalent to requiring that the historical correlation matrix H
and the implied covariance matrix ¥ commute, that is, HY = > H. We are grateful
to Bing Han for this observation.

19There are also other reasons for considering lower-dimensional specifications of the
covariance matrix. For example, lower-dimensional models have the advantage of
being more econometrically efficient and there may be less risk of overfitting with a
more parsimonious specification; see Dai and Singleton (1999).
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rates. After six months, however, the first forward becomes the spot rate, leaving
only 28 forward rates to simulate during the second six month period. Because of
the time homogeneity of the model, the relevant 28 by 28 covariance matrix is given
by taking the first 28 rows and columns of 3J; the last row and column are dropped
from the covariance matrix Y. Similarly, the first row and column are dropped from
the Jacobian since they involve derivatives with respect to the first forward which
has now become the spot rate. This process is repeated until the last six-month
period when only the final forward rate remains to be simulated.

In this study, we use three different parameterizations of > to ensure that our
results are robust. A European swaption can be viewed as an option on a portfolio
of forward rates since forward swap rates can be closely approximated as linear com-
binations of individual forward rates. Because of this, market prices of swaptions
contain significant amounts of information about the correlation matrix of forwards.
In these three parameterizations, we make use of this information about the corre-
lation matrix by fitting the model to a wide variety of different swaption and cap
prices. Recall that an interest rate caplet can be viewed as a European swaption on
a short-term swap.

In the first parameterization, which we designate the swaption-cap parameter-
ization, we solve for the implied ¥ that best fits the six caps and the 42 European
swaptions with 7' < 15 shown in Table 1, where equal weight is given to caps and
swaptions in the objective function. The swaption-cap model fits the market quite
well and the RMSE taken over all 48 prices is only 3.866 percent. This RMSE is sig-
nificantly smaller than the typical bid/ask spread for the caps and swaptions which
is on the order to 6 to 8 percent of their value.

In the second parameterization, which we designate the swaption parameteriza-
tion, we solve for the implied X that best fits the 42 European swaptions only. This
approach is similar to that used in Longstaff, Santa-Clara, and Schwartz (2000). The
swaption model fits the data very well and has a RMSE of only 2.336 percent, where
the RMSE is taken over the 42 swaptions. One possible reason for why the model
fits better when only swaptions are included is suggested by the results of Longstaff,
Santa-Clara, and Schwartz who find evidence that pricing in the caps market is not
always consistent with pricing in the swaptions market.

In the third parameterization, which we designate the swaption-caplet parame-
terization, we first use a cubic spline procedure to interpolate the cap volatilities in
Table 1 and obtain estimates of individual caplet volatilities out to 15 years.2® We
then constrain the main diagonal of ¥ to match these caplet volatilities, resulting in
an exact fit to the market prices of the original caps. This is done by first recognizing
that the squared volatility of the Nth caplet is the average value of the first N terms

20Gince the longest maturity cap is 10 years, we estimate the caplet volatilities from
10 to 15 years by a simple linear extrapolation. Alternative approaches yield similar
results to those reported in the paper.
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along the diagonal, and then solving for each element along the diagonal sequentially
by a simple bootstrap procedure. With this constraint on the main diagonal of the
covariance matrix, the problem then reduces to solving for the four eigenvalues of
the implied correlation matrix that best fit the 42 European swaptions. Thus, this
approach results in the cap prices being fitted exactly while the swaption prices are
fitted to minimize their RMSE. This parameterization results in a RMSE of 6.979
for the 42 swaptions. This is significantly higher than for the other two parameter-
izations, although still on the same order of magnitude as the bid/ask spreads for
the swaptions.

5. OPTIMAL AND SUBOPTIMAL EXERCISE STRATEGIES
AND THE VALUATION OF AMERICAN SWAPTIONS

In valuing American-style swaptions, we use the least squares Monte Carlo (LSM)
simulation technique of Longstaff and Schwartz (2000). There are three basic moti-
vations for this valuation methodology. First, standard binomial or finite difference
techniques are not computationally feasible because of the high dimensionality of
the string model. Second, the LSM algorithm has the important advantage of al-
lowing us to distinguish between the dimensionality of the exercise policy used for
American-style swaptions and the dimensionality of the factor structure of the term
structure. This differentiation is generally not possible using standard numerical
techniques for American options. Finally, Longstaff and Schwartz demonstrate that
the LSM algorithm is accurate and computationally efficient.

The key to the LSM approach is the fact that at any exercise date, the optimal
stopping strategy for an American option is determined by comparing the value of
immediate exercise with the value of continuing to keep the option alive. From
standard option pricing theory, however, this continuation value can be expressed
as a conditional expectation under the risk-neutral measure. The LSM approach
estimates this conditional expectation using the cross-sectional information about
the term structure in the simulation. Specifically, the LSM approach regresses the
discounted ex post cash flows from continuing along each path onto functions of
the current values of the state variables. The fitted value from this regression is an
efficient estimator for the conditional expectation function. Note that the estimated
conditional expectation will typically be nonlinear in the state variables. Exercising
the option whenever the immediate exercise value is greater than the estimated value
of continuation defines a simple stopping time rule, which Longstaff and Schwartz
(2000) show closely approximates the optimal stopping rule.?!

21 Longstaff and Schwartz present a number of numerical examples showing that the
LSM algorithm results in American option values that are numerically indistinguish-
able from those implied by finite difference techniques. On the other hand, since
Longstaff and Schwartz only offer limited convergence results in their paper, it is
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Since the optimal exercise strategy at any exercise date is determined by the
conditional expectation function, we can contrast single-factor and multi-factor mod-
els in terms of their implications for the conditional expectation function. One
well-known property of single-factor term structure models is that they imply that
changes in the term structure are perfectly correlated across maturities. It is im-
portant to observe that this feature is due entirely to the fact that the time series
properties of the term structure are driven by a single Brownian motion, and has
nothing to do with how the single-factor model is parameterized to match the cross
section of current market prices. A direct implication of this perfect correlation is
that once we condition on the current value of the underlying swap, all other in-
formation about the term structure becomes redundant in forming the conditional
expectation.?? Thus, the current value of the swap becomes a sufficient statistic for
making exercise decisions in a single-factor model.?3

If the term structure is actually driven by multiple factors, then other infor-
mation besides the current value of the underlying swap becomes useful in forming
the conditional expectation. In a multi-factor setting, the conditional expectation
depends not only on the current value of the underlying swap, but on all forward
values of the swap as well. Thus, because of the perfect correlation inherent in single-
factor models, single-factor exercise decisions are made conditional on only a subset
of the relevant term structure information. This is the sense in which single-factor
models are myopic. In contrast, the optimal multi-factor strategy is determined
by the conditional expectation function which is based on all of the term structure
information.

Intuitively, this result parallels Merton (1973) who shows that in a single-factor
setting, the optimal early exercise decision for an American option is determined
entirely by whether the value of the underlying asset exceeds a critical threshold.

important to recognize that the accuracy of the LSM algorithm for high-dimensional
problems where finite difference techniques cannot be used as a benchmark has not
yet been fully verified.

22Note that we could also use any other point along the curve as the conditioning
variable since all points are perfectly correlated. Doing this, however, results in
virtually identical results. Since we need to condition on the underlying value of the
swap anyway to determine the immediate exercise value of the swaption, the value
of the underlying swap is the logical choice for the conditioning variable.

23Using the LSM framework, this result is easily verified by simulating paths of
the term structure using different single-factor models such as Vasicek (1977), Cox,
Ingersoll, and Ross (1985), Black Derman and Toy (1990), or a single-factor Heath,
Jarrow, and Morton (1992) model. In each single-factor model, we estimate the
continuation value for an American-style swaption by regressing discounted ex post
cash flows on a basis set of functions of the value of the underlying swap. We
then reestimate the regression after adding forward values of the underlying asset
as additional explanatory variables. A standard F' test shows that the additional
variables do not have incremental explanatory power in the regression.
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Thus, by its nature, a single-factor model implies that the exercise boundary is one-
dimensional. In contrast, when the term structure is driven by multiple factors, the
optimal exercise boundary is actually a multi-dimensional surface. In general, the
multi-dimensional optimal exercise boundary cannot be well approximated by the
one-dimensional exercise boundary implied by a single-factor model.

An alternative way of seeing this is from the perspective of the hedging or repli-
cation strategy. Because of the perfect correlation inherent in single-factor models,
single-factor models imply that an American-style swaption can be perfectly hedged
by trading in the underlying swap. If there are multiple factors, however, then an
American swaption cannot be completely hedged by any single-security hedging port-
folio, no matter how elaborately the single-factor model is fitted to the cross section
of market prices. This latter point is particularly important since some practitioners
believe that since a cross section of market option prices can be fit arbitrarily well
in a single-factor model by simply adding extra parameters, the American option
values implied by the fitted single-factor model must be accurate and the implied
hedging strategy sound. It is clear, however, that fitting a model to a cross section of
European swaption prices does not guarantee that the model will capture the time
series properties or dynamics of the term structure. Because of the intertemporal
nature of the American swaption exercise problem, however, the optimal exercise de-
cision depends crucially on the dynamics of the term structure. Thus, by failing to
capture the dynamic behavior of the term structure, single-factor models inherently
miss a key determinant of the optimal exercise strategy.

To study the costs of using single-factor models to make exercise decisions for
American-style swaptions when the term structure is actually driven by multiple
factors, we use the following approach. First, we simulate paths of the term structure
using the four-factor string model. We then solve for the single-factor stopping rule
by including only functions of the current value of the underlying swap as explanatory
variables in the LSM regressions.?* Note that in doing this, we are giving the single-
factor model its best chance since we allow the conditional expectation function to
be estimated with knowledge of the actual structure of the economy over time by
using the actual paths of the term structure generated by the multi-factor model.
This is equivalent to allowing the single-factor model to be recalibrated at each
exercise date to the current market values of all European interest rate derivatives.
This clearly parallels the way an actual swaptionholder would use a single-factor
model over time; the swaptionholder would need to correct for the model’s failure to
capture interest dynamics by recalibrating it at each exercise date before evaluating
whether exercise was optimal. In this sense, the single-factor stopping rule we obtain
is the best of all possible single-factor exercise policies since it is based on the actual
term structure dynamics. We then apply the single-factor exercise strategy to paths

24We follow Longstaff and Schwartz (2000) in using the first three powers of the
value of the underlying swap as basis functions. We also use a variety of other types
and numbers of basis functions. The results are virtually identical to those reported.
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generated by the multi-factor model and solve for the present value of the cash flows
generated. Finally, we compare this present value with the present value obtained
from following the optimal multi-factor strategy.

It is important to stress that the correct way to study the costs of following
single-factor strategies in a multi-factor world is by comparing the present values of
the cash flows obtained by following the stopping rules on a common set of paths
of the term structure. A number of recent practitioner papers addressing this issue
fail to do this, and come to the incorrect conclusion that American-style swaptions
can actually be more valuable using a single-factor model than using a multi-factor
model. These papers, however, suffer from several shortcomings. First, these papers
do not hold fixed the dynamics of the term structure in their analysis and then
compare results across different calibrations. This is the well-known problem of
comparing across different equilibria. This comparison could only be relevant if the
factor structure of the economy were to shift from a multi-factor to a single-factor
structure. Second, these papers confuse the swaption value that comes out of the
single-factor model with the present value that would actually be achieved from
following the single-factor strategy in a multi-factor world. If the term structure is
driven by multiple factors, then the American swaption value implied by the single-
factor model has little relation to the present value of the actual cash flows that
will be realized over time from following the single-factor exercise strategy. This
is just a simple corollary of the well-known fact that if the dynamics of a model
are misspecified, then the actual present value achieved by following the hedging
strategy implied by the model need not equal the value given by the model. For
many applications where the goal is to value European options, this bias can go
either way and the realized present value may be higher or lower than the model
price. Our key point, however, is that the American problem is much less forgiving;
if the stopping rule is based on a misspecified single-factor model, the stopping rule
will be suboptimal and the present value of realized cash flows will be less than if
the optimal multi-factor model is followed.?°

To illustrate the point that if a model is misspecified, then the value it gives for
American options need not equal the present value of cash flows obtained by following
the implied exercise strategy, consider the following example. Let X and Y denote
the prices of two risky assets. One-period and two-period European exchange options
are available in the market with payoffs of max(0,X; — ¥7) and max(0, Xy — Y3)
respectively. Assuming that » = .10, the two assets have a correlation of .98, each
has a current price of 100, and that the volatility of both assets is .10, the standard
Margrabe (1978) model implies prices for these options of .80 and 1.13 respectively.
Now assume that we want to value an American exchange option that is exercisable
at times ¢t = 1 and ¢t = 2. It is easily shown that early exercise of this American

2 Dybvig (1988) addresses a similar issue in the context of dynamic optimal portfolio
choice problems. He shows that some common portfolio strategies fail to be optimal
because they are incompletely diversified over time.
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exchange option is not optimal, and that the correct value is 1.13.

Now assume, however, than an investor has the mistaken belief that X is con-
stant over time and that market prices of these options are driven by the single
factor Y. This investor now views the one-period and two-period exchange options
as simple put options on Y with strike prices of X, and the investor can match their
market prices by assuming that the volatility of Y is .100 during the first year, and
.152 during the second year. Given this calibration, the single-factor model implies
that the value of the American exchange option is 1.37. When this investor arrives
at t = 1, the value of X may have changed, and he will need to recalibrate the single-
factor model to reflect the new price of the remaining European exchange option. It
is easily shown that once this calibration is performed, the investor will never find it
optimal to exercise early at time ¢ = 1. Thus, the actual cash flows received by the
investor will have present value of 1.13 since they are the same as under the optimal
strategy. The bottom line is that although the misspecified single-factor model val-
ues the American exchange option at 1.37, the actual present value of the cash flows
is only about 82 percent of the amount that the investor would have been willing to
pay to acquire the American exchange option. Note that at both times ¢ = 0 and
t = 1, the single-factor model is calibrated to match the market prices of the Euro-
pean exchange options. Despite this, the misspecified single-factor model results in
a valuation for the American exchange option that is severely upward biased.

The appendix presents a more extensive example of an American option on a
coupon bond in a two-factor binomial term structure model. In this example, an
investor using a single-factor model calibrated to the market prices of all European
options values the American option at .514. Applying the single-factor model over
time, however, results in cash flows that have a present value of .563. In this case,
the value implied by the single-factor model is actually biased downward by about
ten percent.

These two examples show clearly that if the term structure is driven by multiple
factors, the American option values given by a misspecified single-factor model are
meaningless since they do not equal the present value of the cash flows generated
by following the single-factor, multi-factor, or any other strategy. Thus, comparing
the value implied by a single-factor model with the value implied by a multi-factor
model is a conceptually flawed exercise. Single-factor and multi-factor models can
only be compared in terms of the present value of cash flows generated by their
exercise strategies while holding fixed the term structure model.

The fact that American option values implied by a misspecified model are biased
poses some subtle but important risks to option holders. For example, consider
an investor who believes that the term structure is driven by a single-factor and
calibrates his model to exactly match a cross section of European swaptions. Now
imagine that the single-factor model just happens to match the current market price
of an American swaption as implied by the true multi-factor model. This investor
might well conclude that since his model matches both the European and American
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swaption prices, that his single-factor model is adequate. In fact, however, the cash
flows generated by following the single-factor strategy would have a lower present
value than the market price of the American swaption. The only clues that this
investor might have that there was a problem with his model would be the frequent
need to recalibrate, persistent hedging errors, and a general tendency for his portfolio
to underperform expectations. This underperformance would appear inexplicable to
the investor since the valuations implied by the single-factor would match the market.
The problem, of course, is that the American swaption is only worth the market price
to an investor who follows the optimal multi-factor strategy. Purchasing an American
swaption at the market price is a negative NPV investment to an investor following
a suboptimal single-factor strategy.

6. THE COST OF SUBOPTIMAL EXERCISE STRATEGIES

In this section, we study the costs of following single-factor exercise strategies for
American-style swaptions when the term structure is driven by multiple factors. We
report the results separately for each of the three parameterizations of the string
model.

6.1 The Swaption-Cap Parameterization.

Using the swaption-cap parameterization of the string model, we simulate paths
of the term structure and then apply the LSM model to value a variety of typical
American-style swaption structures. To value the American-style swaptions using
a one-factor model, we use only functions of the current value of the underlying
swap as explanatory variables in the LSM regressions. As discussed, this reflects
the way that a swaptionholder using a single-factor model and then recalibrating
the model at each exercise date would make exercise decisions over time. To value
the American-style swaption under the optimal four-factor strategy, we include the
same functions of the underlying swap value as well as all forward values of the swap
as explanatory variables in the LSM regressions. The cost to the swaptionholder of
using the suboptimal single-factor strategy is then estimated by taking the difference
between the values of the swaption given by following the four-factor and one-factor
exercise strategies.

Define the American exercise premium to be the difference between the T noncall
7 American swaption value and the value of the corresponding 7 into 7'— 7 European
swaption. Table 2 reports the American exercise premia given by the one-factor and
four-factor models, the difference between these premia, and the difference between
these premia expressed as a percentage of the one-factor American exercise premium.

Several important results are shown in Table 2. First, the value of the swaption
is always higher when the optimal strategy is followed than when the single-factor
strategy is followed. This demonstrates clearly that even the best single-factor ex-
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ercise strategy cannot approximate the optimal strategy accurately enough to avoid
some erosion in the value of swaption cash flows to an optionholder. Second, the
size of the difference between the American exercise premia can be large in eco-
nomic terms. For example, the difference between the American exercise premia
often exceeds ten cents per $100 notional and can even exceed twenty cents. Since
a large percentage of American-style swaptions are created in conjunction with the
issuance of corporate or agency debt, it is typical for these swaptions to have longer
maturities. Even if the cost of following the single-factor strategy is only five to ten
cents, however, a back of the envelope calculation using the notional amounts for
swaptions reported by ISDA implies that the total present value economic cost to
swaption holders of using single-factor models to exercise swaptions could be on the
order of several billion dollars. Finally, the percentage differences between the Amer-
ican exercise premia can also be large. In some cases, these percentage differences
exceed ten percent.

To provide some additional intuition about the costs of suboptimal exercise, it
is also useful to compare the optimal and single-factor exercise strategies in terms
of their implications for the risk-neutral probability of exercise, the timing of exer-
cise, and the cash flows received by swaption holders at exercise. Table 3 provides
summary statistics for these measures. In comparing the optimal and single-factor
strategies, the paths of the term structure are held fixed. Thus, Table 3 reflects only
the differences in the exercise strategies.

Table 3 shows that in every case, following the optimal strategy results in the
swaption being exercised a higher percentage of the time. While the differences
between these probabilities are only about one to two percent, these are easily shown
to be highly statistically significant. Note that the probabilities of exercising these at-
the-money-forward American-style swaptions are all greater than 50 percent. This
follows because a swaption holder has multiple chances to exercise an American-
style swaption. In contrast, the probability of exercising an at-the-money European
swaption is only 50 percent.

Table 3 also shows that the optimal and single-factor strategies differ in their
implications for the timing of exercise. Typically, the optimal strategy results in the
swaption being exercised later on average. There are, however, exceptions to this
rule. For example, the mean time to exercise for the 5 noncall 2 receivers swaption
is slightly lower under the optimal strategy than under the one-factor strategy. The
table also reports the percentage of times that the optimal strategy results in an
exercise that is earlier than, at the same time as, or later than for the one-factor
strategy. As shown, the optimal policy frequently results in the swaption being
exercised later than for the single-factor strategy, although the reverse can be true.
A careful analysis of the paths where the option is exercised earlier under the optimal
policy than under the single-factor strategy reveals that these are paths where the
forward values of the underlying swap were substantially different from the current
value of the underlying swap. Thus, by myopically focusing only on the current
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value of the underlying swap, the single-factor strategy misses the possibility that
the swaption is expected to move out of the money in the future and hence fails to
accelerate the exercise of the swaption. This clearly shows the suboptimality of the
myopic single-factor strategy.

The fact that the optimal exercise strategy implies that the swaption can be
exercised either earlier or later than for the single-factor strategy indicates that there
is no simple adjustment to the single-factor strategy which will make it approximate
the optimal strategy. For example, a common rule of thumb on Wall Street is to wait
until the underlying asset is slightly beyond the one-factor exercise boundary before
exercising it. The reasoning here is that if there is a second factor, such as stochastic
volatility, the option may be worth more than implied by a single-factor model. If
so, then an optionholder should be less willing to lose the time value of an American
option by exercising it early. This analysis indicates that this rule of thumb does not
solve the problem; there is no way in which a single-factor strategy can be adjusted
to overcome its suboptimality. The optimal multi-dimensional exercise boundary
implied by the optimal strategy cannot be well approximated by the one-dimensional
exercise boundary implied by a single-factor model.

Finally, Table 3 shows that the average (undiscounted) cash flow received at
exercise is always higher under the optimal strategy than under the single-factor
strategy. In some cases, the difference can be very substantial, and may be as large
as 20 to 30 cents. Note, however, that there is no guarantee that the multi-factor
strategy will outperform the single-factor strategy along each path. There are clearly
a small percentage of paths where the single-factor strategy results in a higher ex
post cash flow. This is to be expected, however, since the optimal strategy is only
optimal ex ante. Taken altogether, these results indicate that the economic costs
from following the single-factor model come from both a reduction in the percentage
of times the swaption is exercised as well as from a decrease in the average cash flow
realized from exercise.

6.2 The Swaption Parameterization.

Using the swaption parameterization of the string model, Table 4 reports the sum-
mary statistics for the one-factor and four-factor American exercise premia. The
results are similar to those described above. As before, the four-factor American
exercise premia are all greater than the one-factor American exercise premia. In
addition, the economic magnitude of the differences in the premia is significant, al-
though typically not quite as large as in the previous parameterization. In general,
the values of the American exercise premia themselves are fairly consistent between
this and the previous parameterization, providing evidence for the stability of the
parameterization methodology.

Turning to the probabilities of exercise, timing of exercise, and size of the cash
flows implied by the optimal and one-factor strategies, summary statistics are pre-
sented in Table 5. As before, the probability of exercise is always higher under the
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optimal strategy than under the one-factor strategy. The mean time to exercise is
again typically greater under the optimal strategy than under the single-factor strat-
egy. This time, however, the 10 noncall 2 and 15 noncall 1 receivers swaptions are
exceptions. The optimal strategy can result in the swaption being exercised earlier
than for the single-factor strategy as much as 10 percent of the time or more. Finally,
Table 5 shows that the mean cash flow resulting from following the optimal strategy
is always greater than that from following the single-factor strategy.

6.3 The Swaption-Caplet Parameterization.

By requiring that the main diagonal of the implied covariance matrix price the inter-
polated values of individual caplets exactly, the swaptions and caplets parameteriza-
tion implicitly places significant weight on the caps market in the fitting procedure.
Using the paths of the term structure generated by this parameterization, Table 6
reports summary statistics for the American exercise premia implied by the optimal
and single-factor exercise strategies.

Although this parameterization is structurally quite different from the previous
two parameterizations, the basic implications for the cost of following single-factor
exercise strategies are very similar. The magnitude of the differences in the American
exercise premia are large in economic terms and are typically greater than in the
previous two parameterizations. Percentage differences are now often greater than
ten percent.

Table 7 shows that the probability of exercising a swaption is again strictly
greater when the optimal policy is followed and represents an important component
of the cost of following suboptimal single-factor strategies. The mean times to ex-
ercise are now all greater under the optimal strategy than under the single-factor
strategy, which contrasts with the results for the earlier parameterizations. How-
ever, the result that the optimal strategy can result in earlier exercise than would be
the case for the one-factor strategy holds for this parameterization. The summary
statistics for mean cash flows in Table 7 again show that the optimal strategy results
in larger cash flows on average, although individual paths can result in smaller cash
flows.

7. CONCLUSION

This paper studies the costs of following single-factor exercise strategies for American
swaptions when the term structure is actually driven by multiple factors. A number
of important contributions emerge from this study.

e We develop a simple yet fully-specified multi-factor string model of the term
structure for valuing interest rate derivatives. The architecture of this time-
homogeneous model is based on the covariance matrix of forward rates. This
feature has the important advantage of allowing the model to be identified in an

25



econometric sense since the number of parameters required to specify the model
just equals the number of parameters that can be inferred from market data.
This feature is not shared by many current forward-rate-based term structure
models.

e We estimate the present value costs to the holder of an American swaption who
uses a one-factor model to make exercise decisions when the term structure
is driven by multiple factors. Even though the swaption holder is allowed to
recalibrate the one-factor model at each exercise date, we find that the best one-
factor strategy is very suboptimal. Based on current market statistics, the total
present value costs of following suboptimal strategies implied by single-factor
models could be on the order of several billion dollars.

e These results make clear that if the dynamic specification of a model does not
match actual market dynamics, the American exercise strategy implied by the
model will be suboptimal. This is true no matter how extensively the model
is fitted to match a cross section of current option prices. Furthermore, if the
dynamics of a model are misspecified, then American option values implied by
the model will be biased estimates of the actual present value of cash flows
generated by following the exercise strategy implied by the model.

These results make a strong case for moving beyond simplistic single-factor models
to more realistic (and easier to calibrate) string models in fixed income markets.
From a theoretical point of view, string models have many advantages as a valuation
framework, and this paper demonstrates that string models can be easily imple-
mented. From a practical perspective, string models have the potential advantage
of providing swaptionholders a tractable and intuitive way of extracting more value
from their American-style swaptions by following more optimal exercise strategies.
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APPENDIX

As a second example of the need to specify a model that adequately captures the
dynamics of the underlying asset in order to price American options, we look at the
valuation of an American option on a coupon bond in a two-factor binomial term
structure model. Figure 1 shows the tree followed by the short rate in this world.
We let the short rate » be equal to the sum of two independent or uncorrelated
state variables z and y. The process for = is given by the recursion z(t + 1) =
z(t) exp(0.2u), where u can take the values -1 or 1 with risk-neutral probability 0.5.
The process for y is similarly given by the recursion y(t + 1) = y(¢) exp(0.3v), where
v can take the values -1 or 1, independently of u, again with risk-neutral probability
0.5. The initial values of z and y are x(0) = 0.02 and y(0) = 0.03, corresponding to
an initial short rate r(0) = 0.05. The tree shows the values of the zero coupon bonds
with maturities at times 2 and 3, where the price at time ¢t of the discount bond
with maturity T is denoted by D(t,T), for T' = 2,3, as well as the ex-coupon price
of a coupon bond with maturity at time 3 and coupon rate 0.05, denoted C(t,3).
The tree also shows the values of two European call options on the coupon bond,
both with strike 1, notional 100, and maturities at times 1 and 2, denoted E(t,T),
for T = 1,2. The payoff to the first call is thus 100 max(C(1,3) — 1,0) and the
payoff of the second is 100 max(C(2,3) —1,0). Finally, the tree shows the price of an
American call option on the coupon bond, with strike 1, notional 100, and maturity
at time 2, denoted A(t,2). This option can be exercised early at time 1. The value of
the American option at time 0 is .563, and the option should be optimally exercised
at time 1 in node D, or else only at maturity.

Consider now the case of an investor who uses a single-factor Black, Derman
and Toy model to price this American option. In this model, the short rate is given
by the recursion r(t + 1) = r(t) exp(m(t) + s(t)u), where u can take the values -1
or 1 with probability 0.5. At time 0, the investor solves for the values of m(0),
m(1), s(0) and s(1) that fit the observed prices of the bonds as well as the European
options of Figure 1. The corresponding binomial tree is shown in Figure 2. Note
that this model is not time homogeneous, as the drift and the volatility of the short
rate change through time. This is of course needed to be able to fit the prices of two
bonds and two European options. This investor would value the American option at
.b14, which is about 10 percent less than the true value of the option. At time 1, the
investor needs to recalibrate the one-factor model. Figure 3 shows the one-period
binomial trees that are fitted to each of the four possible states of the world. In each
of the trees, the investor picks new values for m(1) and s(1) to fit the then observed
values of the remaining bond and European option. These values of m(1) and s(1) are
different from the values found at time 0 and reflect the poor performance of the one-
factor model in capturing the dynamics of the term structure. This problem is often
encountered in practice, when time-inhomogeneous, low-dimensional models require
different parameter values each time they are recalibrated. This need to recalibrate
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through time will typically correspond to a mispricing of American options. In this
example, the investor also decides to exercise the option at node D and hold it until
maturity in the other nodes. Thus, by construction, the cash flows obtained by the
myopic investor are the same as those obtained by the far-sighted investor, and so
is the time 0 value of those cash flows. However, the myopic investor significantly
misprices the American option at time 0. Note that the mispricing of the American
option by the myopic investor can go in either direction. For different parameter
values of the two-factor binomial model, we obtained cases where the one-factor
value of the American option was greater than, less than, or equal to the present
value of the cash flows generated from following the single-factor exercise strategy.
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Table 1

Broker Swaption and Cap Volatilities. This table shows mid-market implied volatilities for the indicated at-the-money-forward European
swaptions an(i) interest-rate caps for July 2, 1999 as reported by the Bloomberg system. Swaption maturity represents the number of years until
expiration for the swaption. Swap tenor refers to the length in years of the swap that the swaptionholder enters into if the swaption is exercised. Cap
maturity refers to the number of years until the maturity date of the final caplet.

Swap Tenor

Swaption Maturity 1 2 3 4 5 7 10
5 16.8 16.8 16.6 16.4 16.3 16.2 16.2

1 16.9 16.7 16.5 16.2 16.0 15.8 15.7

2 17.0 16.7 16.5 16.2 15.8 15.6 154

3 16.9 16.5 16.3 16.0 15.6 15.2 15.0

4 16.8 16.4 16.1 15.7 15.4 14.9 14.6

5 16.6 16.1 15.7 15.3 15.0 14.4 14.0

7 15.2 14.4 14.0 13.7 13.3 12.9 12.5

10 13.1 124 11.9 11.5 11.2 10.8 10.3

Cap Maturity

2 3 4 ) 7 10

Cap Volatility 17.25 18.50 18.62 18.62 18.20 17.20




Table 2

Summary Statistics for American Exercise Premia from the Swaption-Cap Parameterization of the String Model. This table reports
the values per $100 notional of the American exercise premia for the indicated T noncall 7 American at-the-money-forward swaptions implied by
the string model under the single-factor and four-factor exercise strategies. The American exercise premium is the difference between the American
swaption value and the corresponding European swaption value. The percentage difference is computed relative to the one-factor American exercise
premium. The model is parameterized by solving for the four implied eigenvalues that best fit the market prices of the 42 swaptions where the final
maturity date of the underlying swap is less than or equal to 15 years an§ also to the market prices to two, three, four, five, seven, and ten year caps.
The fitting procedure places 50 percent of the weight on the caps and 50 percent of the Weigﬁt on the swaptions. All values are calculated using the
LSM algorithm based on 10,000 simulated paths o% the term structure.

Swaption One-Factor American Four-Factor American Percentage

T T Type Exercise Premium Exercise Premium Difference Difference
5 1 Recvr .525 .542 .017 3.24

5 2 Recvr .263 272 .009 3.42

10 1 Recvr 1.799 1.846 .047 2.61
10 2 Recvr 1.222 1.279 .057 4.66
10 5 Recvr .353 .381 .028 7.93
15 1 Recvr 3.116 3.236 120 3.85
15 3 Recvr 1.758 1.851 .093 5.29
15 5 Recvr 1.018 1.086 .068 6.68
5 1 Payer .681 .709 .028 4.11

5 2 Payer 281 .301 .020 7.12

10 1 Payer 2.452 2.609 157 6.40
10 2 Payer 1.590 1.715 125 7.86
10 5 Payer .436 491 .055 12.61
15 2 Payer 4.232 4.460 .228 5.39
15 3 Payer 2.281 2.503 .222 9.73
15 5 Payer 1.283 1.424 141 11.00




Table 3

Comparison of One-Factor and Four-Factor Exercise Strategies using Swaption-Cap Parameterization of String Model. This table
reports summary statistics for the one-factor and four-factor exercise strategies. Total probability represents the total percentage of paths for which
the swaption is exercised. The mean time to exercise is expressed in years. The earlier, same, and later statistics represent the percentage of times
that follF())Wing the four-factor exercise strategy results in an exercise earlier, at the same time, or later than when the one-factor strategy is followed.
Mean cash flow at exercise is the average cash flow per $100 notional received when the swaption is exercised. The less, equal, and greater statistics
represent the percentage of times that fgollowing the four-factor exercise strategy results in a cash flow that is less than, equal to, or greater than the
cash flows that are received when the one-factor strategy is followed. All values are calculated using the LSM algorithm based on 10,000 simulated
paths of the term structure.

Probability Mean Time Four-Factor Strategy Mean Cash Flow Four-Factor Strategy
of Exercise to Exercise Results in Exercise at Exercise Results in Cash Flow
Swaption One- Four- One- Four- One- Four-
T T Type Factor Factor Factor Factor Earlier Same Later Factor Factor Less Equal Greater
5 1 Recvr 67.51 68.41 3.51 3.51 5.07 88.22 6.71 1.050 1.062 5.03  88.22 6.75
5 2 Recvr 66.06 66.82 3.93 3.92 4.08 90.65 5.27 .992 .998 4.14  90.65 5.21
10 1 Recvr 69.44 70.36 6.21 6.24 8.55  75.49 15.96 2.552 2.606 10.28  75.49 14.23
10 2 Recvr 69.42 70.13 6.48 6.50 7.09 78.31 14.60 2.636 2.693 8.90 78.31 12.79
10 5 Recvr 65.71 66.49 7.87 7.87 4.43  87.28 8.29 2.239 2.266 5.19  87.28 7.53
15 1 Recvr 71.57 72.38 8.96 9.02 10.01 67.18 22.81 3.997 4.154 12,97  67.18 19.85
15 3 Recvr 71.19 71.93 9.45 9.52 7.93 7250 19.57 4.198 4.329 10.73  72.50 16.77
15 5 Recvr 69.28 70.17 10.35 10.39 6.85 77.24 1591 4.068 4.162 8.86 77.24 13.90
5 1 Payer 64.36 65.49 3.74 3.74 8.08 80.83 11.09 1.149 1.168 8.60  80.83 10.57
5 2 Payer 59.88 60.87 4.13 4.13 5.31 87.14 7.55 1.019 1.033 5.48 87.14 7.38
10 1 Payer 68.22 69.65 6.62 6.62 12.28 64.94 22.78 3.014 3.152  14.57 64.94 20.49
10 2 Payer 66.41 67.77 6.89 6.89 10.53 68.28 21.19 2.923 3.043 1294  68.28 18.78
10 5 Payer 59.92 61.02 8.23 8.23 6.42 81.82 11.76 2.509 2.561 7.51  81.82 10.67
15 1 Payer 71.92 73.06 9.13 9.13 14.09 56.41  29.50 4.803 5.076 17.89  56.41 25.70
15 3 Payer 69.64 70.79 9.75 9.75 10.63  62.08 27.29 4.678 4.961 14.95 62.08 22.97
15 5 Payer 66.59 67.78 10.68 10.68 8.62 68.64 22.74 4.556 4.754 12.33  68.64 19.03




Table 4

Summary Statistics for American Exercise Premia from the Swaption Parameterization of the String Model. This table reports
the values per $100 notional of the American exercise premia for the indicated T noncall 7 American at-the-money-forward swaptions implied by
the string model under the single-factor and four-factor exercise strategies. The American exercise premium is the difference between the American
swaption value and the corresponding European swaption value. The percentage difference is computed relative to the one-factor American exercise
premium. The model is parameterized by solving for the four implied eigenvalues that best fit the market prices of the 42 swaptions where the final
maturity date of the und%rlying swap is less than or equal to 15 years. All values are calculated using the LSM algorithm based on 10,000 simulated
paths of the term structure.

Swaption One-Factor American Four-Factor American Percentage

T T Type Exercise Premium Exercise Premium Difference Difference
5 1 Recvr .502 .506 .004 .80

5 2 Recvr 241 .243 .003 1.24

10 1 Recvr 1.739 1.789 .051 2.93
10 2 Recvr 1.182 1.235 .053 4.48
10 5 Recvr 331 .340 .009 2.72
15 1 Recvr 3.110 3.191 .081 2.60
15 3 Recvr 1.694 1.753 .059 3.48
15 5 Recvr 993 1.039 .045 4.53
5 1 Payer .658 .667 .010 1.52

5 2 Payer .261 270 .009 3.45

10 1 Payer 2.401 2.491 .091 3.79
10 2 Payer 1.527 1.612 .085 5.57
10 5 Payer .406 428 .023 5.67
15 2 Payer 4.217 4.376 .158 3.75
15 3 Payer 2.257 2.398 141 6.25
15 5 Payer 1.242 1.354 112 9.02




Table 5

Comparison of One-Factor and Four-Factor Exercise Strategies using Swaption Parameterization of String Model. This table reports
summary statistics for the one-factor and four-factor exercise strategies. Total probability represents the total percentage of paths for which the
swaption is exercised. The mean time to exercise is expressed in years. The earlier, same, and later statistics represent the percentage of times that
following the four-factor exercise strategy results in an exercise earlier, at the same time, or later than when the one-factor strategy is followed. Mean
cash flow at exercise is the average cash flow per $100 notional received when the swaption is exercised. The less, equal, and greater statistics represent
the percentage of times that following the four-factor exercise strategy results in a cash flow that is less than, equal to, or greater than the cash flows
Ehat aljﬁe re}g:eived when the one-factor strategy is followed. All values are calculated using the LSM algorithm based on 10,000 simulated paths of the
erm structure.

Probability Mean Time Four-Factor Strategy Mean Cash Flow Four-Factor Strategy
of Exercise to Exercise Results in Exercise at Exercise Results in Cash Flow
Swaption One- Four- One- Four- One- Four-
T T Type Factor  Factor Factor Factor Earlier Same Later Factor Factor Less Equal Greater
5 1 Recvr 66.76 66.95 3.50 3.51 3.18  92.70 4.12 1.031 1.034 3.32 92,70 3.98
5 2 Recvr 65.05 65.19 3.93 3.94 2.07 94.69 3.24 .968 .970 244  94.69 2.87
10 1 Recvr 67.81 68.71 6.23 6.23 7.29 80.69 12.02 2.513 2.559 8.01  80.69 11.30
10 2 Recvr 67.92 68.55 6.49 6.48 6.14 82.99 10.87 2.608 2.652 7.00 82.99 10.01
10 5 Recvr 64.44 64.81 7.89 7.89 3.40 91.04 5.56 2.195 2.204 3.95 91.04 5.01
15 1 Recvr 70.37 71.23 9.00 8.98 10.56  70.19 19.25 3.998 4.092 12.87 70.19 16.94
15 3 Recvr 69.83 70.33 9.49 9.53 7.76 75.85 16.39 4.160 4.245 10.31  75.85 13.84
15 5 Recvr 68.01 68.49 10.41 10.44 6.01 80.81 13.18 4.043 4.106 8.04  80.81 11.15
5 1 Payer 63.94 64.26 3.74 3.75 4.84  88.37 6.79 1.131 1.138 5.36  88.37 6.27
5 2 Payer 59.69 59.94 4.12 4.12 3.08 92.06 4.86 .999 1.005 3.56  92.06 4.38
10 1 Payer 67.29 68.21 6.61 6.63 10.80 71.35 17.85 2.987 3.066 12.52 71.35 16.13
10 2 Payer 65.28 66.37 6.89 6.91 8.59 75.12 16.29 2.889 2.969 10.32 75.12 14.56
10 5 Payer 58.72 59.50 8.25 8.24 5.34  86.53 8.13 2471 2.492 5.78  86.53 7.69
15 1 Payer 71.64 72.29 9.09 9.18 13.13 60.51 26.36 4.802 4.995 16.80 60.51 22.69
15 3 Payer 69.15 69.75 9.75 9.87 9.89 66.04 24.07 4.690 4.880 14.14  66.04 19.82
15 5 Payer 65.99 66.70 10.69 10.79 7.65 72.67 19.68 4.544 4.693 10.90  72.67 16.43




Table 6

Summary Statistics for American Exercise Premia from the Swaption-Caplet Parameterization of the String Model. This table
reports the values per $100 notional of the American exercise premia for the indicated T noncall 7 American at-the-money-forward swaptions implied
by the string model under the single-factor and four-factor exercise strategies. The American exercise premium is the difference between the American
swaption value and the corresponding European swaption value. The percentage difference is computed relative to the one-factor American exercise
premium. The model is parameterized by solving for the four implied eigenvalues that best fit the market prices of the 42 swaptions where the final
maturity date of the underlying swap is less than or equal to 15 years and also to the implied prices of 29 caplets with maturities ranging from .50 to
15.00 years. By construction, the fitting procedure fits the caplet prices exactly. All values are calculated using the LSM algorithm %ased on 10,000
simulated paths of the term structure.

Swaption One-Factor American Four-Factor American Percentage

T T Type Exercise Premium Exercise Premium Difference Difference
5 1 Recvr .564 611 .047 8.33

5 2 Recvr .280 .309 .029 10.36

10 1 Recvr 1.809 1.881 .072 3.98
10 2 Recvr 1.218 1.307 .089 7.31
10 5 Recvr .389 .449 .060 15.42
15 1 Recvr 2.965 3.060 .095 3.20
15 3 Recvr 1.696 1.820 124 7.31
15 5 Recvr 1.032 1.136 104 10.08
5 1 Payer 721 .804 .083 11.51

5 2 Payer .300 .351 .051 17.00

10 1 Payer 2.528 2.714 .186 7.36
10 2 Payer 1.636 1.822 .186 11.37
10 5 Payer 491 .605 114 23.22
15 2 Payer 4.144 4.368 .224 5.41
15 3 Payer 2.293 2.525 .232 10.12
15 5 Payer 1.336 1.541 .205 15.34




Comparison of One-Factor and Four-Factor Exercise Strategies using Swaption-Caplet Parameterization of String Model. This
table reports summary statistics for the one-factor and four-factor exercise strategies. Total probability represents the total percentage of paths for
which the swaption is exercised. The mean time to exercise is expressed in years. The earlier, same, and later statistics represent the percentage of
times that following the four-factor exercise strategy results in an exercise earlier, at the same time, or later than when the one-factor strategy is
e cash flow per $100 notional received when the swaption is exercised. The less, equal, and greater
ollowing the four-factor exercise strategy results in a cash flow that is less than, equal to, or greater

followed. Mean cash flow at exercise is the avera,

statistics represent the percentage of times that

than the cash flows that are received when the one-factor strategy is followed. All values are calculated using the LSM algorithm based on 10,000

simulated paths of the term structure.

Table 7

Probability
of Exercise

Mean Time
to Exercise

Four-Factor Strategy
Results in Exercise

Mean Cash Flow

at Exercise

Four-Factor Strategy
Results in Cash Flow

Swaption One- Four- One- Four- One- Four-

T T Type Factor Factor Factor Factor Earlier Same Later Factor Factor Less Equal Greater
5 1 Recvr 68.60 69.64 3.51 3.55 5.62 79.65 14.73 1.081 1.117 7.95  79.65 12.40
5 2 Recvr 66.92 68.00 3.91 3.93 4.63 83.68 11.69 1.052 1.073 6.46  83.68 9.86
10 1 Recvr 71.49 72.13 6.12 6.22 7.25 7235 20.40 2.541 2.617 10.81 72.35 16.84
10 2 Recvr 71.54 72.20 6.38 6.46 6.87 73.28 19.85 2.626 2.711 10.27  73.28 16.45
10 5 Recvr 67.95 69.00 7.82 7.84 5.29 80.19 14.52 2.221 2.281 7.40  80.19 12.41
15 1 Recvr 71.29 72.10 8.87 8.95 9.03 69.34 21.63 3.904 4.048 12.12  69.34 18.54
15 3 Recvr 71.18 72.14 9.37 9.45 743 7198  20.59 4.086 4.243 10.41  71.98 17.61
15 5 Recvr 69.48 70.64 10.33 10.38 7.19 7425 18.56 3.918 4.061 9.39  74.25 16.36
5 1 Payer 63.97 65.80 3.76 3.79 9.59 69.47 20.94 1.176 1.234 12,65 69.47 17.88
5 2 Payer 59.62 61.21 4.13 4.15 6.24 79.05 14.71 1.072 1.108 8.10  79.05 12.85
10 1 Payer 70.49 71.25 6.51 6.66 11.01  59.28 29.71 3.031 3.196 16.36  59.28 24.36
10 2 Payer 68.55 69.27 6.80 6.95 9.31 62.58 28.11 2.921 3.102 14.62  62.58 22.80
10 5 Payer 61.94 63.35 8.17 8.23 6.64 73.19 20.17 2.481 2,592 10.27 73.19 16.54
15 1 Payer 72.19 73.52 9.03 9.17 1291  55.77 31.32 4.762 5.064 17.72  55.77 26.51
15 3 Payer 70.17 71.47 9.64 9.85 10.49  59.96  29.55 4.628 4.935 15.28  59.96 24.76
15 5 Payer 67.43 68.65 10.60 10.76 9.27 63.50 27.23 4.453 4.723 13.88  63.50 22.62




Figure 1

Two-Factor Binomial Tree for Pricing an American Option on a Coupon Bond. The tree below shows the paths of a two-factor binomial model of the short rate, r, under the risk-neutral
probability measure. The short rate is equal to the sum of two state variables x and y, r(t) = x(t) + y(t). The process for x is given by the recursion x(t+1) = x(t) exp(0.2u), where u can take the
values -1 or 1 with probability 0.5. The process for y is given by the recursion y(t+1) = y(t) exp(0.3v), where v can take the values -1 or 1, independently of u, with probability 0.5. The initial
values of x and y are x(0) = 0.02 and y(0) = 0.03. The tree shows the values of the zero coupon bonds with maturities at times 2 and 3, where the price at timet of the discount bond with maturity
T isdenoted by D(t,T), for T = 2, 3, aswell as the ex-coupon price of a coupon bond with maturity at time 3 and coupon rate 0.05, denoted C(t,3). The tree also shows the values of two European
options on the coupon bond, with strike 1, a notional of 100, and maturities at times 1 and 2, denoted E(t,T), for T = 1, 2. Finaly, the tree shows the price of an American option on the coupon
bond, with strike 1, anotional of 100, with maturity at time 2, denoted A(t,2).
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Figure2

One-Factor Binomial Tree for Pricing an American Option on a Coupon Bond, Calibrated to Match the Bond Prices and European Option Prices at Time 0 of the Two-Factor Treein
Figure 1. Thetree below shows the paths of a one-factor binomial model of the short rate, r, under the risk-neutral probability measure. The process for the short rate is given by therecursion r(t+1) =
r(t) exp(m(t)+s(t)u), where u can take the values -1 or 1 with probability 0.5. The values of m and sarem(0) = 0.06124, m(1) = -0.081017, s(0) = 0.170083, and s(1) = 0.122065, which are chosen to
fit the prices of bonds and European options observed at time O in the two-factor tree of figure 1. The tree shows the values of the zero coupon bonds with maturities at times 2 and 3, wherethe price at
timet of the discount bond with maturity T isdenoted by D(t,T), for T = 2, 3, aswell as the ex-coupon price of a coupon bond with maturity at time 3 and coupon rate 0.05, denoted C(t,3). The treeaso
shows the values of two European options on the coupon bond, with strike 1, a notional of 100, and maturities at times 1 and 2, denoted E(t,T), for T = 1, 2. Finaly, the tree shows the price of an
American option on the coupon bond, with strike 1, anotional of 100, with maturity at time 2, denoted A(t,2).

7(2) = 0.0766
D2 =1 D(2:3) = 0.9263 C(2:3) = 0.9726
1(1) = 0.069 E(22)=0 A2 =0
D(1,2) = 0.9409 D(1,3) = 0.8835 C(1,3) = 0.9747
E(L1)=0 E(1,2)=0 A2 =0 1(2) = 0.0495
D2 =1 D(2:3) = 0.9517 C(2:3) = 0.9993
E(22)=0 A2 =0
1(0) = 0.05
D(0,2) = 0.9033 D(0.3) = 0.8563 C(0,3) = 0.9919
E(0,1) = 0.5139 E(0,2) = 0.3259 A(0,2) = 05139
1(2) = 0.0535
D2 =1 D(23) = 0.9479 C(2:3) = 0.9953
1(1) = 0.0426 E(22)=0 A2 =0
D(1,2) = 0.9583 D(1,3) = 0.917 C(1,3) = 1.0108
E(1,1) = 1.0806 E(1,2) = 0.6852 A(1,2) = 1.0806 1(2) = 0.0346
DR2)=1 D(2:3) = 0.966 C(23) = 1.0143
E(2,2) = 1.4301 A(2,2) = 14301

Time0 Timel Time 2



Figure3

One-Factor Binomial Trees for Pricing an American Option on a Coupon Bond, Calibrated to Match the Bond Prices and European Option Prices at Time 1 of the
Two-Factor Treein Figure 1. The tree below shows four one-factor binomial models of the short rate, r, under the risk-neutral probability measure. The processes for the
short rate are given by the recursion r(t+1) = r(t) exp(m(t)+s(t)u), where u can take the values -1 or 1 with probability 0.5. The values of m and s are chosen to fit the prices of
bonds and European options observed in each of the nodes at time 1 in the two-factor tree of figure 1. The tree shows the values of the zero coupon bonds with maturities at
times 2 and 3, where the price at time t of the discount bond with maturity T is denoted by D(t,T), for T = 2, 3, as well as the ex-coupon price of a coupon bond with maturity at
time 3 and coupon rate 0.05, denoted C(t,3). The tree also shows the values of two European options on the coupon bond, with strike 1, a notional of 100, and maturities at
times 1 and 2, denoted E(t,T), for T = 1, 2. Finally, the tree shows the price of an American option on the coupon bond, with strike 1, anotional of 100, with maturity at time 2, d
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