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We show the Cox, Ingersoll, and Ross term structure framework can allow a variety of alternative
equilibrium solutions for discount bond prices. This is important since it allows us additional
flexibility in developing models that capture the properties of the term structure. As an example, we
solve for the value of a discount bond when the short-term rate is absorbed at zero. We compare the
yields implied by this model to those implied by the original Cox, Ingersoll, and Ross model. We also
show that alternative equilibria can occur in other term structure models.

1. Introduction

Cox, Ingersoll, and Ross (1985b) present a general equilibrium model of the
term structure in which the short-term interest rate is the single factor. Although
Cox, Ingersoll, and Ross (CIR) consider only one equilibrium, their framework
can allow other interesting equilibria. These alternative equilibria are obtained
by imposing boundary conditions on bond prices when the short-term interest
rate reaches zero. Each equilibrium corresponds to a different assumption about
the behavior of the short-term interest-rate process at zero. This feature of the
CIR framework is important since it provides an additional degree of freedom in
developing general equilibrium term structure models that capture the actual
properties of the term structure.

In section 2, we identify the conditions under which it is possible to have
alternative equilibria in the CIR framework. In section 3, we provide an example
of an alternative equilibrium by deriving the value of a discount bond when the
short-term interest rate is absorbed at zero. We compare the yields implied by
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this equilibrium to those implied by the original CIR equilibrium and investi-
gate the empirical significance of their differences. In section 4, we show that
multiple equilibria can also occur in other general equilibrium term structure
models, such as Longstaff (1989). Since the choice among different equilibria
must ultimately be made on the basis of empirical evidence, section 5 presents
historical statistics about the behavior of interest rates when close to zero.
Concluding remarks are made in section 6.

2. Alternative equilibria

In the CIR (1985b) framework, the short-term interest rate r is proportional to
an exogenous state variable Y which follows a square root process. This
proportionality allows CIR to make a change of variables from Y to the
endogenous short-term interest rate r. With this change of variables, the dy-
namics of r can be expressed as

dr = (¢ — xr)dt + a\/;dZ , )

where o, k, 0 > 0 and r is defined on (0, o).}

Let D(r, ) denote the value of a riskless unit discount bond with maturity <.
Under CIR’s assumption of logarithmic utility, the bond’s equilibrium risk
premium or instantaneous expected excess return equals the instantaneous
covariance between the bond’s return and the return on the representative
investor’s portfolio. Since the covariance between changes in r and production
rates of return is proportional to r in the CIR model, the covariance between the
bond’s rate of return and the return on the investor’s equilibrium portfolio is
ArD,/D, where the constant A represents the market price of interest-rate risk.
Thus, the bond’s equilibrium expected rate of return is

r+ ArD,/D. (2)

Equating this expression to Ito’s formula for the bond’s expected rate of return
yields the fundamental valuation equation

2

"7 D, + (& — fr)D, — D = D, (3a)

'The parameter « corresponds to the term x8 in CIR (1985b, eq. 17). We use this simpler notation
to conform more closely to Feller (1951), who shows that the behavior of the square root process as it
approaches the singularity at zero is governed entirely by the relation between the parameters ¢ and
¢% and is independent of .
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for r and 7 in (0, o0 ) x (0, o), where f = x + A. In addition, the discount bond
price must satisfy the maturity condition

D(r0)=1. (3b)

To complete the specification of the fundamental valuation equation, we need
to consider whether boundary conditions can be imposed on D(r, t) atr = 0 and
r = o. As shown by Karlin and Taylor (1981), this can be determined by
examining the behavior of the risk-adjusted stochastic process

dr = (a — Br)dt + o, /rdZ , 4)

at the singularities r = 0 and r = .

Using the boundary classification criteria described in Karlin and Taylor, the
boundary at co can be shown to be inaccessible in finite time. This means that
no boundary condition can be imposed at r = oo when 0 < 7 < o0, and that
the behavior of D(r, t) as r — oo is implicitly specified by the fundamental
valuation equation.

The behavior of eq. (4) at zero is more complicated. As demonstrated by Feller
(1951), the nature of the singularity depends on the relative values of « and o?.
When 0 < ¢? < 20, zero is inaccessible and no boundary condition can be
imposed there. In this case, the behavior of D(r, ) as r — 0 is implicitly specified
by the fundamental valuation equation and the solution to egs. (3a) and (3b) is
unique. A sufficient condition for the absence of multiple equilibria is that the
state variable Y have no accessible boundaries; see CIR (1985a). From eq. (23) of
CIR (1985b), the resulting equilibrium discount bond price is

D(r, t) = A(t) exp( — B(7)r), )

where

Wexp(B+1)e/)
A(x) =
© <(ﬁ+?)(eXP(W)—1)+2V> ’

_ 2(expr) - 1)
(B+v)(exp(yr) — 1) + 2y’

y=/B*+ 20%.

By construction, the discount bond price in (5) earns the equilibrium expected
rate of return given in (2) for all r and 7 in (0, o0 )% (0, co). While no explicit
boundary condition is imposed at r = 0, the discount bond price converges to
the well-defined mathematical function A(z) as r — 0.

B(7)
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In the alternative case in which 0 < 2x < ¢?, zero is a regular or attainable
boundary for the risk-adjusted interest-rate process. In this case, the dynamics in
(1) must be supplemented with a description of the behavior of r at r = 0 in order
to uniquely specify the process beyond its first passage to zero. An important
implication is that there are now many possible ways for the interest rate to
behave after reaching zero. Karlin and Taylor (1981, p. 239) state: ‘For a regular
boundary a variety of boundary behavior can be prescribed in a consistent way,
including the contingencies of complete absorption or reflecting, elastic or sticky
barrier phenomena, and even the possibility of the particle (path), when attain-
ing the boundary point, waiting there for an exponentially distributed duration
followed by a jump into the interior of the state space according to a specified
probability distribution.’

When r = 0 is attainable, there are many possible solutions to (3a) and (3b).
To completely specify the fundamental valuation equation and obtain a unique
solution, we must impose an additional boundary condition at r = 0. The form
of the additional boundary condition is determined by the requirement that
markets clear and that bonds earn an equilibrium rate of return when r = 0,
given the representative investor’s beliefs about future interest-rate behavior.
Thus, different assumptions about the behavior of the interest rate at zero map
into different equilibrium boundary conditions, which in turn map into different
equilibrium solutions to the fundamental valuation equation. To illustrate,
consider the following examples:

Example 1. The Absorbing Equilibrium. This equilibrium assumes that the
short-term interest rate is absorbed at zero if it reaches zero. If absorption
occurs, then market clearing requires that discount bonds be priced so that all
forward rates are zero. Furthermore, since bonds are no longer stochastic when
absorption occurs, absence of arbitrage requires that the expected return for
each bond equal zero when r = 0. These two economic conditions are satisfied
by imposing the boundary condition D(0, 7) = 1.

Example 2. The Unrestricted Equilibrium. This equilibrium assumes that the
behavior of the process at r = 0 is specified by extending the dynamics in (1) to
r = 0; no other restriction is imposed. Thus, in this equilibrium, the interest-rate
process returns immediately to positive values if it reaches zero.? When r = 0,
the interest rate is locally deterministic and has dynamics dr = adt. Since the
bond is also locally riskless, equilibrium requires that the rate of return on the

2This tendency is not necessarily the same as reflection at zero, which often requires placing
additional restrictions on derivatives. For example, it may also be consistent with sticky behavior in
which the interest rate spends a strictly positive amount of time on the boundary. Karlin and Taylor
(1981, pp. 257-258) show that the duration on a sticky boundary has no interval. Hence, sticky
behavior involves reaching zero, returning immediately to positive values, and returning to zero
infinitely often.
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bond be zero when r = 0. Assuming that D, and D, are finite at r = 0, the
boundary condition corresponding to the equilibrium requirement that the rate
of return on the bond be zero at r = 0is «D, — D, = 0. Since the functional form
for the value of a discount bond given by CIR holds for all values of & > 0 and
implies finite derivatives D, and D, =0, at r = 0, unrestricted equilibrium
discount bond prices are given by (5). Note that (5) can also be viewed as the
solution to (3a) and (3b) with the boundary condition that the discount bond
price equals A(7) at r = 0, which implies strictly positive forward rates at r = 0.

Example 3. Empirical Equilibria. A variety of other solutions can be obtained
by directly imposing boundary conditions on the bond price at r = 0. As in the
previous examples, however, market-clearing and absence-of-arbitrage condi-
tions require that any boundary condition must imply not only nonnegative
forward rates but also an equilibrium expected rate of return when r =0 in
order to be a valid equilibrium. In some cases, the boundary condition may be
chosen in a way that causes the resulting discount bond prices to fit the observed
term structure. This feature could provide an additional degree of freedom in
developing general equilibrium models that are consistent with the actual
properties of the term structure.

3. A specific example

As a specific illustration of an alternative equilibrium in the CIR framework,
we derive the value of a unit discount bond when the short-term interest rate is
absorbed at zero. As shown above, the value of the discount bond in the
absorbing equilibrium is obtained by solving (3a) and (3b) subject to the
boundary condition D(0, ) = 1. The resulting absorbing equilibrium value for
the discount bond is

1
D(?", T) = A(T)exp( — B(‘L‘)r)|:P(1 — 20(/0'2’ C(T)r) + m

- j = azi((? - SZCW exp( — CON (C(e)r) =2 dt],
©)

where A(t) and B(t) are as defined in (5), I'() is the gamma function, P(-,") is the
incomplete gamma function, and

_ 2y exp(y7)B(7)

0= Cepirn = 17
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Table 1

Yields to maturity implied by the Cox, Ingersoll, and Ross (1985b) unrestricted equilibrium. Yields
are expressed in basis points. Maturities are expressed in years. The underlying parameter values are
a = 0.0025, B = 0.05, and o2 = 0.01.

Short-term interest rate

Maturity 0.005 0.02 0.04 0.06 0.08
1 61.0 207.0 401.8 596.6 . 791.4
2 714 2132 402.4 591.5 780.6
3 81.2 218.6 401.8 585.0 768.2
4 90.5 2233 400.3 5773 754.4
5 99.2 2273 398.0 568.8 739.5
6 1074 230.7 395.1 559.5 7239
7 115.1 2336 391.7 549.8 707.9
8 1222 236.1 3879 539.8 691.6
9 128.9 238.2 3839 529.6 6754

10 135.1 240.0 379.7 5195 ..~ 659.3

11 140.9 2414 3754 509.5-° 643.5

12 146.3 2426 371.1 499.6 628.1

13 151.3 243.7 366.9 490.1 6133

14 155.9 244.5 362.7 480.8 598.9

15 160.3 2453 358.5 471.9 585.2

16 164.3 2459 354.6 463.3 5721

17 168.1 246.4 350.8 455.2 559.6

18 171.6 246.8 347.1 4474 547.7

19 1749 2472 343.6 440.0 536.4

20 178.0 2475 340.2 4329 525.6

The gamma and incomplete gamma functions are described in Abramowitz and
Stegun (1970, ch. 6). Differentiation shows that (6) satisfies the partial differential
equation in (3a). In addition, (6) satisfies the maturity condition D(r, 0) = 1, since
P(1 — 2a/a?, C(1)r) converges to one and the integral converges to zero as
7 — 0. The integral term in (6) is the expected value of 1/ A(r — t) at the time of
the first passage of r to zero, where the expectation is taken with respect to the
first-passage density for the risk-neutral process for r described in the separation
theorem in Longstaff (1990). The first-passage density is the time derivative of
the first-passage distribution function 1 — P(1 — 2a/a?, C(t)r) of r to zero. Since
this first-passage density converges to a Dirac delta function as r — 0, we define
the value of the integral term at zero to equal its limit as r — 0. With this
definition, the integral term converges to 1/A4(t) asr — 0. Hence, (6) satisfies the
boundary condition D(0, t) = 1. Finally, D(r, t) converges to zero as r — 0.

To examine the differences between prices implied by the unrestricted equilib-
rium and the absorbing equilibrium, tables 1 and 2 present yields for the
unrestricted and absorbing equilibria, respectively. Table 3 reports the difference
between the unrestricted and absorbing yields. The parameter values used in the
tables imply a long-run average value of r of 0.05.
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Table 2

Yields to maturity implied by the Cox, Ingersoll, and Ross (1985b) absorbing equilibrium. Yields are
expressed in basis points. Maturities are expressed in years. The underlying parameter values are
a = 0.0025, 8 = 0.05, and ¢* = 0.01.

Short-term interest rate

Maturity 0.005 0.02 . 004 0.06 0.08
1 60.6 207.0 401.8 596.6 7914
2 69.1 213.1 402.4 591.5 780.6
3 75.7 218.0 401.7 585.0 768.2
4 80.9 221.7 400.0 577.3 7543
5 84.9 2243 397.3 568.5 7394
6 88.0 225.8 393.7 559.0 723.7
7 90.3 226.4 389.3 548.8 7074
8 91.8 226.1 384.2 538.1 690.8
9 92.9 2252 378.6 527.1 674.0

10 934 223.6 372.5 515.8 657.2

11 93.5 221.6 366.1 504.4 640.5

12 93.3 219.1 359.4 492.9 623.9

13 92.7 2162 352.5 481.4 607.7

14 91.9 2i3.1 345.5 470.1 591.8

15 90.9 209.7 3383 458.8 576.2

16 89.8 206.1 331.2 4478 561.1

17 88.5 202.4 324.0 4369 546.3

18 87.1 198.6 3169 426.2 5320

19 85.6 194.7 309.8 415.8 5182

20 84.1 190.8 302.8 405.7 504.7

The term structures implied by the two equilibria can be significantly differ-
ent. When r = 0.02, the unrestricted term structure is monotone increasing,
while the absorbing term structure has a hump at a maturity of seven years,
which is important since an often-cited criticism of the CIR unrestricted model is
its inability to generate humps at longer maturities.

Tables 1 and 2 show that the absorbing yields are always less than
the unrestricted yields. Intuitively, the economic implication of absorp-
tion is that future cash flows are no longer discounted. Hence, absorption
has the same effect as accelerating the payment of principal on the discount
bond.

Table 3 shows that the difference between the unrestricted and absorbing
yields is generally an increasing function of maturity; logically, an increase in
maturity implies an increasing probability of absorption. The difference in the
yields is a decreasing function of r, because an increase in r lessens the probabi-
lity of absorption occurring during the life of a discount bond. Note that the
magnitudes of the differences in yields can be quite large for small values of r and
can be economically significant for values of r that are above the long-run mean
value of r. These results drive home the point that by imposing different
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Table 4

Summary statistics for three-month Treasury-bill yields and monthly changes in three-month
Treasury-bill yields for the period January 1930 to December 1940. The data are taken from table A1
of Cecchetti (1988). Yields are expressed in annualized terms.

Yields Changes in yields
Mean ‘ 0.00519 . — 0.00027
Std. dev. 0.00767 0.00267
Minimum 0.00050 —0.01200
Median 0.00200 0.00000
Maximum 0.03840 0.01130
21 0.867 0.157
P2 0.750 0.067
P3 0.636 ~ 0.045
N . 132 132

about the behavior of the short-term rate needs to be made, either implicitly or
explicitly, to obtain a specific model. Which assumption about the boundary
behavior of the short-term interest rate is most realistic is ultimately an empiri-
cal issue.

To provide some evidence on this issue, table 4 reports summary statistics for
the three-month Treasury-bill yield during the 1930-1940 period. These yields
are taken from Cecchetti (1988, table A1) and are based on the midpoint of bid
and ask quotations from the New York Times. This timeframe is chosen since it
includes the lowest three-month Treasury-bills during this century. In addition,
interest on Treasury-bills was not taxable throughout this sample period. Fig. 1
plots the time series of three-month Treasury-bill yields.

As shown, Treasury-bill yields were near zero for extended periods of time. In
particular, fig. 1 shows that extremely low levels of yields tend to persist rather
than immediately increasing back toward higher levels. This behavior appears
to be more consistent with sticky boundary behavior than with reflecting
behavior as corroborated by the serial correlation of changes in yields: reflecting
behavior would induce mean reversion in yields at low interest-rate levels, but in
fact, the first-order serial correlation of monthly changes in 0.157, which is
significant at the 0.10 level.

6. Conclusion

By allowing boundaries to be accessible, multiple equilibria can be accom-
modated in a variety of term structure models, making it possible to generate an
entire class of general equilibrium term structuie models from a single frame-
work. Furthermore, when the origin is accessible, it may be possible to impose
boundary conditions that make the model fit the current yield or forward rate
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Fig. 1. The three-month Treasury-bill rate during 1930 to 1940.

curve, as in Ho and Lee (1986), Hull and White (1990), Black and Karasinski
(1991), and Heath, Jarrow, and Morton (1992).
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