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We derive simple closed-form expressions for European options on coupon bonds using the
general equilibrium term-structure framework of Cox, Ingersoll, and Ross. The properties of
these options are very different from those implied by the Black-Scholes model. For example,
bond call and put values can move in the same direction as the value of the underlying bond
changes. This has important implications for hedging interest-rate risk with bond options.
Furthermore, bond option values can be decreasing functions of interest-rate volatility as well as
their time to expiration. We also examine the properties of American bond options.

1. Introduction

Many recent papers in the financial literature have addressed the import-
ant topic of bond option valuation. A partial listing includes Brennan and
Schwartz (1977), Rendleman and Bartter (1980), Courtadon (1982), Ball and
Torous (1983), Brennan and Schwartz (1983), Cox et al. (1985), Ho (1985),
Dietrich-Campbell and Schwartz (1986), Schaefer and Schwartz (1987), Black
et al (1988), Brenner and Jarrow (1988), Heath et al. (1988), Buser et al.
(1990), Jamshidian (1989), and Hull and White (1990). Of these papers, only
Jamshidian (1989) provides a closed-form solution for the value of an option
on a coupon bond - the most common type of bond option. However,
Jamshidian’s model has the drawback of allowing negative interest rates —
potentially affecting the validity of the model’s pricing and hedging
implications.

This paper presents simple closed-form expressions for the values of
European calls and puts on coupon bonds using the general equilibrium
term-structure framework of Cox, Ingersoll, and Ross [CIR framework; see
Cox et al. (1985)]. A key advantage of this framework is that it implies

Correspondence to: Professor Francis A. Longstaff, The John E. Anderson Graduate School of
Management, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles,
CA 90024-1461, USA.

*I am grateful for helpful discussions with Warren Bailey, Emilio Barone, Stephen Buser,
Tony Sanders, and René Stulz. | am particularly grateful for the comments and suggestions of
the Editor, Giorgio Szeg6, and two anonymous referees. All errors are my responsibility.

0378-4266/93/306.00 © 1993—Elsevier Science Publishers B.V. All rights reserved

JBF.—B



28 F.A. Longstaff, Valuation of options on coupon bonds

nonnegative interest rates. In addition, by allowing yields of all maturities to
be stochastic, this framework is able to capture the full effect of a shift in the
term structure on coupon bond prices.

These valuation expressions have many important implications for the
hedging behavior of coupon bond options. For example, we show that calls
on bonds are decreasing functions of the riskless interest rate. An increase in
the riskless interest rate, however, has an indeterminate effect on the value of
a bond put. Thus, bond call and put prices can move in the same direction as
the value of the underlying bond changes. In addition, we show that bond
option prices can be decreasing functions of their time to expiration as well
as the volatility of the underlying interest-rate process. Intuitively, the reason
for these properties is that changes in the riskless interest rate affect both the
value of the underlying asset and the present value of the strike price — the
interplay of these two effects leads to option values that are fundamentally
different from those implied by the Black—Scholes formula.

We also consider the properties of American bond option prices. We show
that early exercise of American calls is not optimal for sufficiently small
coupon rates. We provide examples of American option prices and character-
ize the early exercise boundary for calls and puts. We show that early
exercise can be optimal for options that are only slightly in the money.

Section 2 discusses the CIR term-structure framework and derives the
closed-form coupon bond option expressions. Section 3 presents comparative
statics as well as examples of coupon bond option prices. Section 4 discusses
the properties of American bond options. Section 5 summarizes the results
and provides concluding remarks.

2. Coupon bond option prices

In deriving expressions for options on coupon bonds, we use the well-
known CIR term-structure model as the basic valuation framework. The CIR
term-structure model is derived in a general equilibrium setting and has the
advantage that the functional form of the market price of interest-rate risk is
obtained as part of the equilibrium. This is important because Cox et al.
(1985) show that this avoids internal inconsistencies and arbitrage opportuni-
ties — something that cannot be guaranteed for other term-structure models
in which the functional form of the risk premium is exogenously specified.
The CIR term-structure model has been used extensively in the literature in
valuing interest-rate-sensitive contingent claims. For example, this model is
used by Dunn and McConnell (1981) to value mortgage-backed securities; by
Cox et al. (1985) to value discount bond options; by Ramaswamy and

!A number of bond option models assume that the instantaneous riskless interest rate is
constant. For example, Dietrich-Campbell and Schwartz (1986) apply (and reject) the Black-
Scholes model to bond options. Also see Schaefer and Schwartz (1987).
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Sundaresan (1985) to value options on futures; by Sundaresan (1991) to value
swaps; and by Longstaff (1990) to value options on yields. Finally, the CIR
model has the advantage of allowing interest-rate volatility to be conditio-
nally heteroskedastic through its dependence on the level of the interest rate.
This is important in light of recent evidence that interest-rate volatility is
closely related to interest-rate levels.? By capturing the dynamic behavior of
interest-rate volatility, the CIR framework has the potential to provide better
models for contingent claims such as interest-rate options since their values
are closely related to interest-rate volatility.?

In the CIR term-structure model, the equilibrium instantaneous riskless
interest rate follows a square root process with dynamics given by

dr=(oc—rcr)dt+0\/;'d2, (1
where o, k, and ¢ are positive constants, and Z is a standard Brownian
motion process.* Denote the current value of a T-maturity unit discount

bond by D(r, T).> From CIR

D(r, T)= A(T)exp[ — B(T)r], 2

where

B+yT/2 2aja?
AT)=| 2 ,
B+ 2

2(e’T—1)
B(T) =
D= Ge™—n+2r

y=+/B*+20%,

*For example, see Fischer and Zechner (1984), Engle et al. (1990), and Chan et al. (1992).

*One drawback of the CIR model is that it may not be possible to fit the entire initial term
structure. Hull and White (1990) address this problem by allowing for a time-dependent drift
term in their specification of the interest-rate process. It is important to note, however, that since
the CIR model inolves three parameters, it is possible to obtain an exact fit to three points on
the initial yield curve. In actuality, it may not be desirable to require a model to fit all observed
yields exactly since actual data contains measurement errors from sources such as bid-ask
spreads, quotation nonsynchronicity, thin trading and the like. By exactly fitting the yield curve
- and any inherent measurement error — we introduce the risk of overfitting the model. See the
discussion of measurement errors in Stambaugh (1988).

“The parameter « corresponds to the term x@ in CIR equation 17 [Cox et al. (1985)]. We use
this simpler notation to conform more closely to Feller (1951) who shows that the behavior of
the square root process as it approaches the singularity at zero is governed entirely by the
relation between the parameters « and ¢? and is independent of k. Also see Capocelli and
Ricciardi (1976).

>Without loss of generality, we assume that contingent claims are valued as of date zero since
the interest-rate process is time homogeneous.
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and where § is the sum of x and the interest-rate risk parameter A.°

Because a coupon bond is just a portfolio of discount bonds of different
maturities, the value of any riskless coupon bond can be expressed as a
weighted sum of discount bond prices

N

Z aiD(rv T;)a . (3)

i=1

where T,,T,,..., Ty represent the N dates on which payments are made, and
the «;>0 terms denote the amount of the payments made. As an example,
consider a 20-year 8% bond with a face amount of 1000. In this case, N =40
since the bond makes 39 semiannual coupon payments of 40 as well as a
final payment of 1040. In addition, 7} =0.5,T, =1,..., T;, =20.

The payoff function for a t-maturity European call on a bond is

max (O, % aD(r, T)) — K), (4)

i=1

where K is the strike price of the option. Since D(r,T) is a monotonic
function of r for all T; in the CIR model, there is a critical interest rate r*
such that the call is exercised if 0<r<r* on its expiration date. This critical
interest rate is easily found by solving the following expression for r*:’

N

Y aD(r*, T)=K (3)

i=1

Having specified the payoff function for a coupon bond call, the price of
the call C(r,7) can now be obtained as the solution of the partial differential
equation

2

%rC,,—f—(oc— Br)C,—rC=C,, (6)

subject to the condition that C(r,0) equals the payoff function in (4). A
separation of variables, in conjunction with the superposition of solutions

5Using our notation, it is clear from CIR equation 22 [Cox et al. (1985)] that interest-rate-
dependent contingent claims depend on x and the market price of interest-rate risk parameter 4
only through their sum B. This follows because f, not «, is the coefficient of r in the drift term of
the risk-adjusted dynamics for r. Thus, B need not be decomposed into its component terms for
the purpose of pricing interest-rate-dependent contingent claims. An important advantage of this
is that the market price of interest-rate risk A does not need to be estimated as a separate
parameter in order to value bond options.

"The critical interest rate can be determined by solving (5) numerically, or by expressing the
bond prices in a Taylor series expansion and using series techniques to find an analytical
solution. The analytical expressions given by Roll (1977) for American calls with dividends and
by Jamshidian (1989) for bond options also require determining the critical value of the state
variable.
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property [see Zauderer (1983)] of linear partial differential equations, leads
to the following closed-form expression for the value of the call option
C(r,7):

L aiD(r, T+ T;) Q(Ni; Vv, 7’11) - KD(T’, T) Q(:uo; Vv, 110)7 (7)

1
where

(14 ey
Ho= i+ oer—1y

B 4}1(1 + éeY(H Ti))r*
M1ty er—1)

dye” (1 + E)r
a2(1+ &)™~y

Ayl + LTy
L 0.2(1 +éey(t+Ti))(eyr—l)’

v=4u/c?,

= +H/y—B),

and where Q(u;v,7) is the cumulative noncentral chi-square distribution
function [see Johnson and Kotz (1970, ch. 28)] with v degrees of freedom
and noncentrality parameter 5. In this expression, the call option is an
explicit function of the current riskless rate r and maturity of the option . In
addition, the call price depends parametrically on the payoffs of the bond
a,i=1,2,...,N, the timing of the payoffs as indexed by T,,i=1,2,...,N, and
the constants «, f, and ¢>. Observe that each bond price in (7) appears in
conjunction with a distinct Q(-) term. This is consistent with Jamshidian
(1989) who shows that an option on a coupon bond can be decomposed into
a portfolio of options whenever bond prices are monotone functions of the
interest rate.® It is easily shown that if the underlying bond is a discount
bond, (7) reduces to the discount bond call valuation expression given by
Cox et al. (1985).°

8This approach is also used by Hull and White (1990) in computing bond option prices
implied by the CIR model.

A similar expression for value of the options in retractable and extendible bonds is
independently derived in Barone and Cuocco (1989).
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Although the call price in (7) requires evaluating Q(u; v,7), we note that the
call value can be approximated to a high degree of accuracy using
Sankaran’s (1963) algorithm for the cumulative noncentral chi-square distri-
bution function.!® In this approach, the value of Q(y;v,n) is approximated
by the cumulative standard normal distribution function &(d), where

d:k((;f;>h—4>, ' (3)

h=1 —%(v+i1)(v+3r])(v+2l1)_2,

2A0v+2 2\ 2
k=<h2 20 L (1= 30+ 200+ 23) ,

v+2n o g (04 2n)
o M DR =30 2L

I=1+h(h—1)

An advantage of this approximation is that call prices can be computed
using the same types of programming routines used to compute Black—
Scholes option prices [Black and Scholes (1973)].

Coupon bond put prices P(r,7) can be obtained directly from the put—call
parity relation

P(r,7)=C(r,7)+ KD(r,7)— i aD(r,7+T). 9)

i=1

Observe that the underlying asset for coupon bond calls and puts is actually
the portfolio of discount bonds maturing after the option expires. However,
the value of this portfolio is strictly less than the current price of the coupon
bond if the bond makes coupon payments prior to the expiration of the
option. For example, the value of the underlying asset for a 5-year option on
a 10-year bond is not the current price of a 15-year bond, but the price of a
15-year bond minus the present value of coupon payments to be made
during the next S5 years.

3. Comparative statics

The closed-form expressions for coupon bond option prices allow us to

1°Numerical examples illustrating the accuracy of the Sankaran (1963) approximation are
given in Johnson and Kotz (1970, ch. 28). See also Schroder (1989).
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examine the comparative statics properties of these contingent claims dir-
ectly. First, consider the relation between coupon bond option prices and the
riskless interest rate. Cox et al. (1985) show that calls on discount bonds are
decreasing functions of the riskless interest rate. This contrasts with Black-
Scholes call option values which are increasing functions of r. The reason for
the difference in behavior is that an increase in r affects bond calls in two
ways. Specifically, an increase in r reduces the value of the underlying
coupon bond which reduces the expected payoff of the call. However, an
increase in r also reduces the present value of the strike price which tends to
increase the call price. Cox et al. indicate that the first effect dominates for
discount bond calls. Note that only the second of these two effects is relevant
for Black—Scholes call option values.!!

Although Cox et al. focus only on the effects of changes in r on the value
of discount bond calls, their results hold true for calls on coupon bonds as
well — coupon bond calls are decreasing functions of the riskless interest rate.
Surprisingly, however, the opposite is not true for bond puts - the
relationship between the value of a bond put and r is indeterminate. The
reason for this is again related to the fact that an increase in r affects bond
put values in two ways. Unlike bond calls, however, neither of the two effects
dominates the other in the case of bond puts. This is illustrated in tables 1
and 2, which present coupon bond call and put prices for different values of r
and K. Tables 1 and 2 also report the first and second derivatives of the
option prices with respect to the underlying bond price — the ‘delta’ and
‘camma’ of the options. The parameters a,f, and ¢* used in the tables are
chosen to be consistent with the unconditional mean, variance, and first-
order autocorrelation of r as measured by the one-month Treasury-bill rate
during the 1978 to 1990 period.

As shown, coupon bond put prices can be uniformly increasing (decreas-
ing) functions of r for small (large) values of K. However, they can be both
increasing and decreasing in r for intermediate values of K. This property
has many important implications for the hedging behavior of interest-rate
puts. For example, tables 1 and 2 show that bond call and put values can
move in the same direction in response to a change in the underlying bond
price. Furthermore, it is possible to hedge a long position in a bond put
using a long position in another put. Note that for intermediate values of r
and K, the price of a bond put may be unaffected by changes in r — the delta
for a bond put may be zero. In general, the deltas for longer-maturity in-the-

"8pecifically, the Black—Scholes formula assumes that the riskless rate is constant. Conse-
quently, the underlying asset price is not a function of the riskless rate, and the partial derivative
of option prices with respect to the riskless rate can be computed while holding the value of the
underlying asset fixed. By allowing yields of all maturities to be stochastic, the bond option
pricing model of this paper captures the effect that changes in the riskless rate have on
underlying bond price.



Table 1

Examples of prices, deitas, and gammas for 5-year call and put options on a
10-year 8% coupon bond with par value 1,000 for different levels of the
riskless rate (r) and strike price (K). Delta is the partial derivative of the
option price with respect to the underlying bond price. Gamma is 10,000
times the second partial derivative of the option price with respect to the
underlying bond price. The option values are computed using parameter

values «=0.06, $=0.75, and ¢*>=0.014.

Call prices Put prices
r K=960 K=980 K=1,000 K=960 K=980 K=1,000
001 2294 12.34 4.98 KRS 7.22 14.58
002 2251 12.08 4.87 3.12 7.22 14.53
003 2209 11.83 476 3.13 7.22 14.49
004 21.67 11.59 4.65 3.15 7.23 14.39
005 2126 11.35 4.54 3.16 7.23 14.35
006 2086 11.11 4.44 3.17 723 14.30
007 2047 10.89 4.33 3.19 7.23 14.25
0.08 2008 10.66 423 3.20 7.23 14.20
009 19.70 1044 4.14 3.21 7.23 14.15
0.10 19.33 10.22 4.04 3.22 7.23 14.10
0.11 1896 10.01 395 3.23 7.22 14.04
0.12  18.60 9.81 3.86 3.24 7.22 13.99
0.13  18.25 9.60 3.77 3.26 7.21 13.94
0.14 1790 9.40 3.68 327 7.21 13.88
0.15  17.56 9.21 3.60 3.28 7.20 13.83

Call deltas Put deltas
r K=960 K=980 K=1,000 K=960 K=980 K=1,000
0.01  0.0453 00266 0.0119 —0.0016  —0.0004 0.0046
002 00450 00264 0.0118 —0.0015  —0.0003 0.0048
003 00447 00262 00117 —0.0015  —0.0002 0.0049
004 0.0446  0.0261 00117 —-0.0014  —-0.0001 0.0051
0.05 0.0442 00259 0.0115 -0.0014  —0.0001 0.0053
0.06 0.0441 00257 00114 —0.0014 - 0.0000 0.0054
007 00438 0.0255 00113 —0.0014 0.0001 0.0055
008 0.0435 00253 00111 —0.0013 0.0001 0.0057
009 00434 00251 00110 —0.0013 0.0002 0.0059
0.10 0.0432 0.0250 0.0109 —0.0013 0.0004 0.0061
0.11  0.0429 0.0247 0.0108 —0.0013 0.0004 0.0062
0.12 0.0427 0.0246  0.0108 —-0.0012 0.0005 0.0064
0.13 0.0424 0.0244 0.0107 -0.0012 0.0006 0.0065
0.14 00423 0.0242 0.0106 —0.0011 0.0006 0.0067
0.15 00419 0.0241  0.0105 ~0.0011 0.0008 0.0069

Call gammas Put gammas
r K=960 K=980 K=1,000 K=960 K=980 K=1,000
001 0254 0.203 0.122 -0.019 ~0.075 —0.159
002 0257 0.204 0.123 —0.021 -0.078 —0.163
003 0260 0.206 0.123 -0.022 —0.080 —0.166
0.04 0.261 0.206 0.123 —0.024 —0.083 —-0.170
005 0.266 0.209 0.124 —0.024 —0.084 —0.173
0.06 0.267 0.211 0.124 -0.025 - —0.086 —0.176
007 0.271 0.212 0.124 —-0.026 —0.089 -0.179
0.08 0.275 0.214 0.125 —-0.028 -0.090 —0.183
0.09 0275 0.216 0.126 -0.029 —-0.094 °  —0.187
0.10 0.278 0.217 0.126 —0.030 -0.097 —0.193
0.11 0.282 0.219 0.127 —0.031 ~0.098 -0.195
0.12  0.283 0.221 0.127 —0.034 —0.102 —-0.199
0.13 0287 0.223 0.128 —0.034 —0.105 —0.201
0.14 0290 0.225 0.128 —0.037 —0.106 —0.206
015 02%4 0.226 0.129 —0.037 -0.109 —0.210




Table 2

Examples of prices, deltas, and gammas for 5-year call and put options on a
10-year 14% coupon bond with par value 1,000 for different levels of the riskless
rate (r) and strike price (K). Delta is the partial derivative of the option price with
respect to the underlying bond price. Gamma is 10,000 times the second partial
derivative of the option price with respect to the underlying bond price. The
option values are computed using parameter values a=0.06, $=0.75, and ¢*=

0.014.

Call prices Put prices
r K=1340 K=1360 K=1,380 K=1340 K=1360 K=1,380
001 3718 2531 15.54 3.17 6.11 10.95
002 3650 2491 15.22 3.19 6.13 10.96
0.03 35383 2443 14.90 321 6.15 10.96
004 3518 23.95 14.59 323 6.16 10.96
005 3453 2348 14.28 3.25 6.18 10.96
0.06  33.89 23.03 13.98 3.27 6.20 10.95
0.07 . 3327 22.58 13.69 3.28 6.21 10.95
008 3266 2213 1341 3.30 6.22 10.94
0.09 3206 21.70 13.12 3.32 6.24 10.94
0.10 3147 21.28 12.85 3.33 6.25 10.93
0.11  30.89 20.86 12.58 3.35 6.26 10.92
012 3032 2045 12.32 3.37 6.27 10.91
013 29.76 20.05 12.06 3.38 6.28 10.90
014 2921 19.66 11.80 3.40 6.29 10.89
015  28.67 19.27 11.56 341 6.30 10.88

Call deltas Put deltas
r K=1340 K=1360 K=1,380 K=1340 K=1360 K=1380
001  0.0509 0.0369 0.0241 -0.0015  —0.0013 —0.0001
002  0.0506 0.0367 0.0240 —-0.0014 —0.0013 0.0000
0.03  0.0504 0.0365 0.0238 —0.0014 —0.0013 0.0001
0.04  0.0502 0.0362 0.0237 —-0.0014 —0.0012 0.0002
0.05  0.0499 0.0360 0.0234 —0.0014 —0.0012 0.0002
0.06  0.0496 0.0359 0.0233 —0.0014 -0.0012 0.0003
007  0.0494 0.0355 0.0231 —-0.0014 —0.0011 0.0004
0.08  0.0492 0.0354 0.0229 —-0.0014 —0.0011 0.0005
0.09  0.0489 0.0352 0.0228 —-00013 —0.0010 0.0006
010  0.0487 0.0350 0.0227 —0.0013  —0.0010 0.0007
0.11  0.0485 0.0348 0.0225 —0.0013  —0.0009 0.0008
0.12  0.0483 0.0346 0.0222 —0.0013  —0.0009 0.0009
013 0.0480 0.0343 0.0221 —-0.0013  —0.0009 0.0010
0.14  0.0478 0.0342 0.0219 —0.0012  —0.0008 0.0011
015  0.0475 0.0339 0.0217 —00012  —0.0008 0.0012

Call gammas Put gammas
r K=1340 K=1360 K=1,380 K=1340 K=1360 K=1,380
001 0.184 0.167 0.136 —0.007 —0.026 —0.059
002 0.187 0.168 0.136 —0.007 -0.027 —0.061
003 0.188 0.170 0.138 —0.008 —0.028 —0.062
004  0.190 0.171 0.139 —0.009 —0.030 —0.064
005  0.193 0.173 0.140 —0.009 —0.031 —0.066
006 0.195 0.175 0.141 —0.009 —0.031 —0.067
007  0.197 0.177 0.143 —0.010 —0.033 —0.069
008  0.199 0.178 0.144 —0.011 —0.034 —0.070
009 0.202 0.180 0.144 —0.012 —0.036 —0.073
010 0.204 0.182 0.146 —0.012 —0.037 —0.075
011  0.206 0.183 0.148 —0.013 —0.038 —-0.076
012  0.208 0.185 0.149 -0.014 —0.039 —0.078 .
013 0210 0.187 0.149 —-0.014 -0.039 —0.081
0.14 0213 0.188 0.149 —0.015 —0.041 —-0.082

0:15 0.215 0.191 0.150 —0.016 —0.042 —0.085
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Table 3

Examples of prices for call and put options on a 10-year 8%

coupon bond with par value 1,000 and strike price 1,000 for .

different levels of the riskless rate (r) and time to expiration

(7). The option prices are computed using parameter values
«=0.06, =0.75, and ¢>=0.014.

Call prices Put prices
r =1 =2 =20 ‘t=1 =2 =20
0.01 2546 1154 142 1.43 847 477
0.02 2083 1033 140 2.65 9.72 470
0.03 16.77 9.22 139 433 11.03 464
0.04 13.30 822 137 648 1239 4.58
0.05 10.39 731 135 9.08 1378 452
0.06 7.99 649 133 1210 1521 446
0.07 6.06 575 131 1546  16.67 440
0.08 4.54 509 130 19.13 1815 435
0.09 335 449 128 23.03  19.65 429
0.10 244 396 1.26 27.11 2116 423
0.11 1.75 348 125 3131 2268 418
0.12 1.25 306 123 3559 2420 412
0.13 0.87 268 121 3991 2572 4.09
0.14 0.61 235 120 4423 2724 402
0.15 042 205 118 4854 2874 396

money options are much smaller than one. The reason for this is that mean
reversion tends to reverse the effects of a small change in the current price of
the underlying bond. Thus, a small change in the current bond price has
little effect on the value of a European option that expires in five years.
These results again contrast with the familiar properties of Black—Scholes
option prices and drive home the point that option pricing in a stochastic
interest-rate setting is much more complex.

Another interesting feature of coupon bond option prices is their relation-
ship with the length of the option’s life 7. Recall that Black—Scholes option
prices are increasing functions of 7. It is easily shown, however, that both
coupon bond call and put prices can be decreasing functions of 7 (note that
we are focusing on options on bonds with final maturity date 7+ Ty, not on
a bond with a specific maturity date). This is illustrated in table 3, which
presents numerical examples for calls and puts on a 10-year 8%, coupon bond
for various values of 7. As shown, calls and puts can be increasing or
decreasing in 7 for small 7. For large 7, however, the options become
uniformly decreasing functions of 7.

The intuition for these results is related to the mean-reversion property of
interest rates (and bond prices) in the CIR framework. For small 7, the
option values are close to their intrinsic value. As 7 increases, however, the
future distribution of bond prices converges to a stationary distribution.
Thus, the variation in option values in response to changes in r decreases as
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Table 4

Examples of prices for two-year call and put options on a ten-year 8%, coupon bond

with par value 1,000 and strike price 1,000 for different levels of the riskless rate (r)

and interest-rate volatility (¢%). The option prices are computed using parameter
values 2=0.06, §=0.75, and ¢%=0.014.

Call prices Put prices
r 62=001 02=0015 ¢*=002  ¢*=0.01 ¢2=0.015 ¢2=002
0.01 9.20 12.10 14.71 7.63 8.65 9.40
0.02 8.02 10.87 1346 8.93 9.89 10.61
0.03 6.97 9.75 1229 10.30 11.19 11.85
0.04 6.04 8.94 11.22 11.74 12.53 13.13
0.05 5.22 7.81 10.23 13.22 1391 14.44
0.06 449 6.97 9.31 14.75 1532 15.77
0.07 3.86 6.21 8.47 1632 16.75 17.12
0.08 3.30 5.53 7.70 17.91 18.21 18.48
0.09 2.82 491 6.99 19.52 19.69 19.86
0.10 2.40 435 6.34 21.15 21.17 21.25
0.11 2.03 3.85 5.74 22.78 22.67 22.64
0.12 1.72 341 5.20 24.41 24.16 24.04
0.13 1.45 3.01 4.70 26.04 25.66 2544
0.14 1.22 2.65 424 27.66 27.15 26.83
0.15 1.02 2.33 3.83 29.27 28.64 28.22

7 increases. Furthermore, this convergence means that the expected payoff of
an option does not increase with t sufficiently to offset the effect of an
increase in the length of the period over which payoffs are discounted.
Consequently, for some sufficiently large 7, coupon bond options are
decreasing functions of © — coupon bond option prices converge to zero at
7—00. In contrast, the upward drift of the risk-neutral process in the Black—
Scholes model just cancels the discount factor, leading to option prices that
are increasing functions of 7, and, therefore, do not converge to zero as t
increases.!?

Black-Scholes option prices are increasing functions of the volatility of the
underlying asset. Surprisingly, the same is not true for the prices of coupon
bond options. This is shown in table 4, which gives the values of call and
puts on a 10-year 8% coupon bond for different values of the riskless rate
and the volatility parameter 2. As shown, for higher values of the riskless
rate, put prices become decreasing functions of the volatility of the term
structure. The intuition for this result is that bond prices are increasing
functions of ¢ in the CIR framework. Thus, as ¢* increases, there are two
effects on option prices. First, there is the standard convexity effect which
enhances the value of calls and puts. In addition, however, there is an effect
on the value of the underlying bond. For calls on bonds, the two effects
reinforce each other and calls are increasing functions of ¢ For puts on

12V/e note that similar comparative statics results for coupon bond options may occur in
other term-structure frameworks besides CIR.
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bonds, however, the second effect can offset the first, resulting in bond put
prices that are decreasing functions of ¢2.

Some of the remaining comparative statics can be signed. For example,
bond calls are decreasing functions of K while the opposite is true for bond
puts. An increase in any q; increases the value of the underlying asset and
has a corresponding effect on option values. Similarly, increasing any of the
T; payment periods defers a cash flow and reduces the underlying asset value.
The remaining comparative statics are indeterminate since changes in the
interest-rate parameters have complex effects on the relative values of bonds
with different maturities.

4. American bond options

Many of the bond options found in financial markets have European
exercise provisions. One important example is the implicit call option in
callable U.S. Treasury bond prices. These bonds consist of a straight coupon
bond and a short call on the coupon bond with a strike price of par. The
implicit call option can be exercised by the U.S. Treasury only during the
last five years of the bond’s life, which is originally as long as thirty years. In
addition, the Treasury can only exercise the call option upon four months
notice prior to a coupon payment date. Because of these restrictions, these
options are much more like European options than American options.’* The
total par value of callable U.S. Treasury bonds currently outstanding is in
excess of $95 billion.

Some coupon bond options, however, have American exercise provisions.
For example, until recently, the Chicago Board Options Exchange traded
American options on specific U.S. Treasury bonds. Although these options
no longer trade, it is still worthwhile to consider the general properties of
American bond options.

An important feature of coupon bonds is that they do not exhibit price
discontinuities on coupon payment dates — in contrast to stock prices on ex
dividend dates. The reason for this is that the purchaser of a coupon bond
pays the seller any accrued coupon at the time of the purchase. Thus, coupon
bonds can be viewed as paying a continuous cash flow proportional to the
coupon rate. This convention of accruing coupon payments is also followed
when an American option on a coupon bond is exercised. Quoting from the

Option Clearing Corporation’s (1987) brochure on characteristics of standar-
dized options,

B3For a discussion of the exercise provisions of callable U.S. Treasury bonds, see Longstaff
(1992).
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‘Exercise prices for Treasury bond options and Treasury note options
are expressed in the same way as prices in the cash market for the
underlying securities, that is, as a percentage of par value. For example,
a large Treasury bond call with an exercise price of 102 would entitle
the holder to purchase the underyling bond for $102,000 (1029, of
$100,000) plus accrued interest on the bond from the date of issue or
that last interest payment date, whichever is later, through and including
the exercise settlement date.’

As shown by Merton (1973), the continuous flow of fixed payments by an
underlying asset has important implications for American calls. Merton
shows that a sufficient condition for no early exercise of a call option is that
the fixed dividend rate be less than rK. Since interest rates are stochastic in
the CIR framework, this condition must be modified in order to apply it to
coupon bond options. Following an argument similar to that of Merton, it is
easily shown that if the present value of all coupons to be accrued prior to
the expiration date of the option is less than (1—D(r, T))K, then it is never
optimal to exercise an American call early.

In general, however, early exercise is optimal and the value of an American
option on a coupon bond will exceed that of a European option. In order to
make comparisons, table 5 presents American option values for the same
coupon bond, riskless rates, and strike prices as in table 1 (results corres-
ponding to table 2 are very similar to those in table 5).'* As shown, in-the-
money American option prices can differ significantly from the corresponding
European option values. Note, however, that deep-out-of-the-money Ameri-
can puts have values very similar to those for European puts. In addition,
table 5 shows that American calls (puts) are monotone decreasing (increas-
ing) functions of the riskless rate — American calls and puts have positive and
negative deltas, respectively. Furthermore, American calls and puts have
positive gammas. Thus, American options on coupon bonds behave more
like Black-Scholes option prices than do European options on coupon
bonds.

Examples of the early exercise boundary for different maturities are given
in table 6. Again, the parameters used are chosen to correspond to those in
tables 1 and 5. The early exercise boundary is expressed as the ratio of the
critical bond price for exercise to the strike price of the option. Hence, the
ratio can be interpreted as a measure of the degree to which the option has
to be in the money before early exercise is optimal. As shown, the early
exercise boundary is a function both of the maturity of the option as well as

'*American option values are computed using an implicit finite difference algorithm which
assumes that the underlying bond pays a continuous coupon. I am grateful to Warren Bailey for
providing me with this program.
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Table §

Examples of prices for 5-year American call and put options on a
10-year 8%, coupon bond with par value 1,000 for different levels of the
riskless rate (r) and strike price (K). Options where immediate early
exercise is optimal are denoted by an asterisk. Option values are
computed numerically using parameter values «=0.06, $=0.75, and

¢?=0.014.
Call prices Put prices

r K=960 K=980 K=1000 . K=960 K=980 K=1,000
001  13476* 114.76* 94.76* 3.27 7.48 14.84
0.02  121.74* 10L.74* 81.74* 3.47 7.86 1542
003 108.87*  B88.87* 68.87* 3.71 8.29 16.08
0.04 96.17*  76.17* 56.17* 3.98 8.80 16.87
0.05 83.63* . 63.63* 43.90 4.31 9.42 17.81
0.06 72.41 5402  36.70 4.72 10.17 19.97
0.07 65.53 4843 3244 5.23 11.11 20.42
0.08 60.76 4456  29.51 5.90 12.33 22.29
0.09 57.14 4164 2731 6.78 13.96 24.78
0.10 54.20 39.27 2554 7.99 16.16 28.16
0.11 51.77 37.32 24.09 9.77 19.42 33.14
0.12 49.63 3561  22.84 12.36 24.12 40.46*
0.13 47.74 3410 2173 16.32 31.54 51.13*
0.14 46.04 3276 2076 22.99 42.30*  62.30*
0.15 44.50 31.54  19.88 33.33* . 53.33%  73.33*

the strike price of the option. The longer the maturity, the more the option
needs to be in the money before it is optimal to exercise early. This is
intuitive since the cost of early exercise is higher for longer-maturity options.
Note that calls generally have to be further in the money before early
exercise is optimal Results for options on bonds with different coupon rates
are qualitatively similar to those shown in table 6.

5. Conclusion

This paper has provided simple closed-form expressions for European
coupon bond options in a general equilibrium setting where interest rates are
nonnegative. The resulting option pricing formulas have many important
implications for hedging interest-rate risk. For example, we have shown that
European bond call and put values can move in the same direction as the
value of the underlying bond changes. Furthermore, in-the-money coupon
bond puts can have a delta of zero — a long position in a coupon bond put
can be a perfectly hedged position by itself.

We have also examined the properties of American options on coupon
bonds. Our results suggest that for sufficiently small coupon rates, early
exercise of American calls is never optimal. Numerical examples show that
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Table 6

Early exercise boundaries for American call and put options on a

10-year 8% coupon bond with par value 1,000 for different option

maturities (t) and strike price (K). The critical early exercise boundary is

expressed as the ratio of the critical bond price to the strike price of the

option. Option values are computed using parameter values a=0.06,
B=0.75, and ¢*>=0.014.

Call prices "Put prices
T K=960 K=980 K=1,000 K=960 K=980 K=1,000
0.00  1.000 1.000 1.000 1.000 1.000 1.000
0.25 1.054 1.036 1.024 0.985 0.985 0.978
0.50 1.058 1.042 1.029 0.985 0.981 0.975
0.75 1.062 1.045 1.032 0.985 0.978 0972
1.00 1.065 1.048 1.033 0.981 0.978 0.969
1.25 1.067 1.050 1.036 0.981 0.978 0.969
1.50  1.069 1.052 1.036 0.981 0.974 0.969
1.75  1.071 1.053 1.037 0.981 0974 0.966
200 1.072 1.055 1.039 0.981 0974 0.966
225 - 1.073 1.055 1.040 0.981 0974 0.966
2.50 1.074 1.056 1.040 0.981 0974 0.966
2.75 1.075 1.058 1.041 0.981 0.974 0.966
3.00 1.076 1.058 1.041 0.981 0974 0.963
325 1.077 1.059 1.041 0.981 0.971 0.963
3.50 1.077 1.059 1.043 0977 0.971 0.963
375 1.077 1.059 1.043 0977 0.971 0.963
400 1.078 1.060 1.044 0.977 0.971 0.963
4.25 1.079 1.061 1.044 0.977 0971 0.963
450 1079 1.061 1.044 0.977 0971 0.959
4.75 1.079 1.061 1.044 0.977 0.971 0.959
5.00 1.080 1.062 1.045 0977 0971 0.959

American options on coupon bonds behave much more like Black—Scholes
options than do European options on coupon bonds.
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