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Many contingent claims incorporate options on yield levels. I derive closed-form expressions for
European yield-option prices using a general equilibrium model in which the underlying yield is
the relevant state variable. The properties of these options differ markedly from those of
conventional options on traded assets. For example, yield-call values can be less than their
intrinsic value and can be decreasing functions of the underlying yield. These features have
important hedging implications. I examine the empirical implications of the model using price
data for the 13-week T-bill options traded on the Chicago Board Options Exchange.

1. Introduction

Unfavorable shifts in the term structure are one of the most basic risks
facing financial-market participants. Volatile interest rates during the past
decade have magnified this risk and have led to a dramatic increase in the
number and types of contingent claims that incorporate options on the level
of yields. These options differ from options on bonds in that the underlying
state variable is a yield. For example, interest-rate caps, floors, locks, and
floor-ceiling agreements are simple portfolios of options on yields. Floating-
rate notes and bonds often include limits on the size of the rate adjustment, a
feature that can be modeled as a yield option. A growing number of financial
institutions issue certificates of deposit that guarantee a minimum renewal
yield if the certificate is rolled over at maturity. This renewal guarantee is
simply a put option on the future yield. Many other contingent claims, such
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as adjustable-rate mortgages, options on interest-rate swaps, options on the
actively traded Eurodollar futures contract, and extendible corporate bonds,
incorporate yield options. Conservative estimates of the total principal value
of contingent claims covered by some form of a yield option are well in excess
of $500 billion.

In this paper, I derive closed-form expressions for the values of European
calls and puts on yields, using an extended version of the Cox, Ingersoll, and
Ross (1985b) general-equilibrium term-structure framework. In this version, I
use the T-maturity yield as the relevant state variable in pricing an option on
the T-maturity yield. This approach allows the model to capture the level of
the yield curve at the most relevant maturities for pricing yield options. I also
derive closed-form expressions for the values of options on average yields and
yield spreads by showing that these claims can be represented as portfolios of
yield calls and puts.

The properties of yield-option prices are fundamentally different from
those of conventional option prices. This is because yields — although simple
nonlinear functions of bond prices — are not themselves the prices of traded
assets. Consequently, they need not follow a martingale under the equivalent
martingale measure described by Harrison and Kreps (1979) and Harrison
and Pliska (1981). One implication is that the price of a call on a yield can
exceed the yield’s current numerical value. Similarly, the price of a yield call
can be less than its intrinsic value. I show that the value of a yield call need
not be a monotone increasing function of the underlying yield. An increase in
the yield increases not only the expected payoff for the call, but also the
discount rate for the payoff, which eventually dominates. This feature has
important implications for hedging interest-rate risk with yield options.
Furthermore, I show that yield-call prices can actually be decreasing func-
tions of the time until expiration and the volatility of the underlying yield.
Corresponding results hold for yield puts.

To examine the empirical implications of these results, I focus on the
valuation of the recently introduced European options on the 13-week
Treasury-bill yield traded on the Chicago Board Options Exchange (CBOE).
The sample covers the first six months of trading, but excludes days on which
the options are not actively traded. Over 450 call and put prices are included.
Interestingly, most of the prices of in-the-money calls are below their intrin-
sic values. This is consistent with the pricing model of this paper, but
incompatible with alternative pricing models based on the Black-Scholes
(1973) or Black (1976) formulas. In addition, I show that deviations from the
traditional put-call parity relation are positively related to the maturity of
the options, as implied by the yield-option model. Like Rubinstein (1985), I
test for model biases by inferring the volatility parameter from observed
option prices and then examining whether the implied volatility estimates are
systematically related to other variables. I find some evidence of a yield-
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related bias, but it accounts for only a small proportion of the variation in the
implied volatilities. Finally, I examine the pricing errors and show that the
model performs well on average. The average pricing error is on the order of
2% for call options and 6% for put options.

Section 2 presents the valuation model, derives closed-form expressions for
yield-option prices, and discusses their analytical properties. Section 3 de-
scribes the data. Section 4 presents the empirical results. Section 5 summa-
rizes the results and makes concluding remarks.

2. Yield option prices

In this section, I derive closed-form expressions for European yield option
values using the general-equilibrium term-structure model of Cox, Ingersoll,
and Ross (1985b). In this model, discount bond prices and yields are obtained
by specializing the intertemporal general-equilibrium asset-pricing model of
Cox, Ingersoll, and Ross (19852) to a single-state-variable setting in which
expected production returns and return variances are proportional to a
fundamental state variable designated X. In addition, the representative
investor is assumed to have time-additive state-independent logarithmic
preferences and the state variable is assumed to follow a singular square root
diffusion process of the type studied by Feller (1951).

Let Y, denote the yield to maturity for discount bonds with a constant
maturity of 7. In this framework, the dynamics of the economy are time-
homogeneous. Thus, without loss of generality, I designate the current time
as time zero. Furthermore, for notational convenience, I denote the time ¢
value of the T-maturity yield [Y,(¢)] simply as Y, when the value of ¢ is clear
from the context. Cox, Ingersoll, and Ross show that the yield on instanta-
neously maturing bonds Y,, is proportional to X, and use this property to
make a change of variables from X to Y,. The resulting equilibrium dynam-
ics for Y|, can be written in the form

dYy = (a —kY,) dt + 0v/Y, dZ, (1)

where a, k, and o are positive constants. The parameter a corresponds to
the term «6 in Cox, Ingersoll, and Ross’ (1985b) eq. 17. We use this simpler
notation to conform more closely to Feller (1951), who shows that the
behavior of the process as it approaches the singularity at zero is governed
entirely by the relation between the parameters @ and o2 and is independent
of k. The T-maturity yield can be expressed as

Yr=A(T) + B(T)Y,, (2)
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where
AT = 2a | (vy+B)(eT—1) +2y
(T) = o7 1 2y e +PT/2 ’
B(T) 2(e’T—1)
T((y+B)(eT-1) +2y)’
v = (B2+ 202)1/2,

and B equals the sum of x and the market price of interest-rate risk
parameter A. Using this notation, it is clear from Cox, Ingersoll, and Ross’
(1985b) eq. 22 that interest-rate-dependent contingent-claim values depend
on « and the market price of interest-rate risk parameter A only through
their sum B. This follows because B, not «, is the coefficient of Y, in the
drift term for the risk-adjusted dynamics of Y,. This feature allows contin-
gent-claim values to be expressed in terms of just three parameters — a, B,
and . An important advantage of this parameterization is that it eliminates
the need to estimate the market price of risk as a separate parameter.
General-equilibrium models of contingent-claim prices have often been criti-
cized because of the perception that market prices of risk need to be
estimated separately, and in addition to the structural parameters of the
model. For example, see Ball and Torous (1983) and Heath, Jarrow, and
Morton (1987). If T is held fixed, Y; is a linear function of Y, and therefore
of X. Thus for T <, the mapping from X to Y, is globally invertible and,
without loss of generality, we are free to make a simple change of variables
from the original-state variable X to Y, (instead of Y,) in deriving interest-
rate-sensitive contingent-claim values.

Intuitively, the choice of Y, as the state variable is a natural one. For
example, if we are interested in pricing options on the ten-year yield, we can
choose the ten-year yield as the state variable. Similarly, if we wish to price
options on the riskless rate Y,, we can choose Y, as the relevant state
variable. Thus, the linearity of yields in the state variable X in this frame-
work actually provides a large family of possible state variables to work with,
rather than just the instantaneous riskless rate. These changes of variable are
all mathematically equivalent, and the contingent-claim values implied by this
framework are independent of the change of variables employed. The advan-
tage of using Y7 as the state variable is that it allows us to fit the level of the
term structure at the most relevant maturity for pricing interest-rate options
rather than at the short end of the maturity spectrum.
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With this framework, we can now derive expressions for the values of
contingent claims with payoffs that depend on Y. Let F(Y;) denote the
payoff function for a contingent claim on Y, at the maturity date r. Cox,
Ingersoll, and Ross (1985a) show that the value of the claim can be obtained
by taking the expectation of the product of F(Y;) and the discount factor
with respect to the risk-adjusted process for Y. In general, however, the
Cox, Ingersoll, and Ross approach is difficult to apply directly because the
stochastic discount factor is correlated with the payoff function, and directly
evaluating the expectation of the product of the discount factor and the
payoff function can be an intractable task.

The following separation theorem resolves this problem. Specifically, I
show that the discounting and expectation-taking functions of valuing inter-
est-rate-dependent contingent claims can be performed sequentially, rather
than simultaneously, by making a further adjustment to the risk-adjusted
process for Y. Thus, contingent claims can be valued by first taking the
expectation of the payoff, and then discounting the expectation at the riskless
rate. In this sense, this theorem provides a stochastic-interest-rate counter-
part to the Cox and Ross (1976) risk-neutral valuation approach.

Separation Theorem. Let F(Y;) denote the payoff function for a ( European-
type) contingent claim on Y, maturing at time 7. Let D(1) denote the value of
a t-maturity discount bond. Then the value of the contingent claim in this
framework is

D(r)E[F(Y7)], (3)
where the expectation is taken with respect to Y, which is distributed as
A(T) +[0?B(7) B(T) /4] x*(v,m),

and where x*(v,m) is a noncentral chi-square variate® with v degrees of
freedom and noncentrality parameter n, where

v=4da/c?,

_ —4yreB(r)A(T)  dy’re”B(7)
17T e S 1)PB(T) | o2e - 1)’B(T) T

'The noncentral chi-square distribution is discussed in Johnson and Kotz (1970, ch. 28). A
linear function of a noncentral chi-square variate can also be viewed as a special case of a
quadratic form of a normal variate. See Johnson and Kotz (1970, ch. 29).
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Proof. Let H(Y,,7) denote the value of an interest-rate-dependent contin-
gent claim with payoff function F(A(T)+ B(T)Y,) at time 7. From Cox,
Ingersoll, and Ross (1985b), H(Y,, 7) satisfies the partial differential equation

2

oY,

where the subscripts represent partial derivatives with respect to the indi-
cated arguments. Let H(Y,, 7) = D(r)G(Y,, ), where D(7) is the value of a
r-maturity discount bond. Differentiating H, substituting the partial deriva-
tives into the partial differential equation, and observing that D(7) also
satisfies the above equation, leads to the following partial differential equa-
tion for G(Y,, 7):

2 YO

2

Gy, + [a - BY, —U'ZTB(T)YO]Gl -G,=0,

subject to the same maturity condition. Thus, from Friedman’s (1975) theo-
rem 5.2,

H(Y,,7) =D(r)E[F(Y7)],
where the expectation is taken with respect to the process
dYy=[a — (B +0?rB(7))Y,]| dt + 0y/Y, dZ.

A simple change of scale and time of the type described by Capocelli and
Ricciardi (1976) can now be used to show that the conditional distribution of
4Y,/lo*rB(r)] implied by this process corresponds to a noncentral chi-square
with v degrees of freedom and noncentrality parameter n. The result then
follows by changing variables from Y, to Y,. W

2.1. Yield calls

The payoff function for a call on Y, with maturity 7 is max(0, Yy — K),
where K denotes the strike price (or exercise yield).? The payoff for the call
is in monetary units such as dollars, since Y, and K are expressed in
numerical form. By expressing Y; and K in numerical form, we avoid

*Since the support of Yy is (A(T), ), we assume that K > A(T). Otherwise, the call option is
always in the money at maturity [this type of call can be valued by simply setting ¢ = 0 in (9)]. If
2a <o ?, the value A(T) is accessible and the support of Yy is actually [ A(T),). As in Cox,
Ingersoll, and Ross (1985b), we require that the process satisfy the generalized reflecting barrier
(zero flux) condition at A(T) when 0 < 2a < o2, See Feller (1951).
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confusing percentages with monetary units. To illustrate, if Y= 0.09 at time
r and K=0.07, then the call payoff is 0.02. In many cases, the payoff
function for actual yield calls may be scaled by multiplying the yield and
strike price by 100 or even 1,000 as in the case of the 13-week Treasury-bill
options traded on the CBOE. From the Separation Theorem, this scaling has
no effect on the valuation of the options - the value of a call on 1,000 Y;
with strike price 1,000 K is just 1,000 times the value of a call on Y, with
strike price K.

Having specified the payoff function, we can obtain the value of a yield call
C(Yr, 7, K) by simply substituting the payoff function into (3) and taking the
relevant expectation. The resulting expression for C(Yy, 7, K) is

D(7)[Y;0(d,v+4,m)E-KQ(¢,v,m) +¥], (4)
where
£=(yrB(r)(em—1)ter72),

 HK-AT))
B o?rB(t)B(T)’

¢=A(T)Q(d,v,n) +arB(7)B(T)Q(b,v +2,7)
- gA(T)Q(d):V + 4’77)3

and where Q(¢,v,n) is the complementary noncentral chi-square distribu-
tion function® with v degrees of freedom and noncentrality parameter 7.

From (4), the call price is actually a function of two yields: Y, (via the
discount bond price) and Y. This is reasonable, since we would expect these
two maturities to be the most relevant for pricing a 7-maturity option on the
T-maturity yield. Eq. (4) has some features in common with both the
Black-Scholes (1973) and Black (1976) option-pricing models. For example,
the first two terms in (4) include the product of a cumulative distribution
function with the underlying state variable Y; and the strike price K,
respectively.

3The complemcntary noncentral chi-square distribution function Q(¢,v,7n) is simply 1-—
x($,v,m), where x?(¢,v,n) is the noncentral chi- -square distribution function. See Johnson
and Kotz (1970, ch. 28, eq. 3.1). An extremely accurate algorithm for computing x 2, v,m) is
given by Sankaran (1963) and discussed by Johnson and Kotz. This algorithm approximates the
noncentral chi-square distribution by a normal distribution. Thus, calculating yield-option values
using this algorithm requires only slightly more computer time than calculating Black-Scholes
option values. Also see Schroder (1989) and Longstaff (1990).
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In general, however, the properties of yield-call values are fundamentally
different from those of conventional call options. The primary reason is that
Y, although a simple nonlinear function of a discount bond price, is itself
not the price of a traded asset. Thus, Y, need not follow a martingale under
the equivalent martingale measure described by Harrison and Kreps (1979)
and Harrison and Pliska (1981). To see this, note that the price of a call on
Y, with a strike price of zero C(Y,,7,0) is not equal to the current value of
Y,. This implies that there is no self-financing portfolio with value equal
to Y, at every point in time. If there were, arbitrage profits could be
generated by taking offsetting positions in this portfolio and in a call on Y;
with a strike price of zero.

To illustrate some of the differences between options on yields and options
on traded assets, consider the rational restrictions on option prices derived
by Merton (1973). For example, Merton shows that call prices are bounded
above by the price of the underlying asset. In contrast, (4) implies that the
price of a call on Y; can exceed the current value of Y. The intuition for
this result can be understood best in terms of the mean reversion of yields in
this framework. If the current value of Y, is below its unconditional value,
future values of Y are likely to be higher. Of course, higher future yields are
also associated with higher discount rates. For short-maturity calls, however,
the prospect of higher yields in the future can outweigh the higher discount
factor and lead to call values in excess of the current value of Y.

Merton also shows that calls on traded assets must be worth more than
their intrinsic value in order to avoid arbitrage opportunities. The value of a
yield call, in contrast, can be less than its intrinsic value max(0,Y,; — K). This
is illustrated in fig. 1, which graphs the values of calls on the three-month
yield as a function of the three-month yield. As shown, the call values are
greater than their intrinsic value for small values of Y;. As Y, increases,
however, the call values eventually drop below their intrinsic value.

The intuition for why the value of a yield call can be less than its intrinsic
value is best understood by first examining the comparative statics for the
option. For example, it is easily shown that the relationship between yield-call
. values and changes in Y, is indeterminate. The reason is that changes in Y,
have two effects on the interest-rate call price. First, an increase in Yr
increases the expected payoff for the call. However, the higher Y7, the higher
the discount factor for the terminal payoff function for the call. For small
values of Y7, the first effect dominates and the call is an increasing function
of Y;. For some sufficiently large value of Y7, however, the latter effect
dominates and the call becomes a decreasing function of Y. Furthermore, as
Y7 — «, (4) implies that the call price converges to zero. This is because an
increase in Y, increases the expected payoff of the option linearly, whereas it
has an exponential effect on the discount factor.* Of course, since the call
price converges to zero as Y, — o, the continuity of the call price in Y,
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Fig. 1. Examples of the values of calls on the three-month Treasury-bill yield plotted as

functions of the three-month Treasury-bill yield. The model parameters used are a =0.04,

B =1.00, and o> = 0.01. The underlying strike price for the calls is 0.07. The call maturities (tau)

are 0.2 and 0.4 years, respectively. The 45-degree line is the intrinsic value for in-the- money
calls.

implies that the call will be below its intrinsic value for some sufficiently large
Y. An important implication is that the early exercise of an American call
option on Y, can be optimal, even though the underlying state variable Y,
follows a process with a continuous sample path.

The nonmonotonicity of the yield call in Y, has many important implica-
tions for the hedging properties of these options. Fig. 2 presents some
additional examples of the values of calls on the three-month yield graphed
as functions of the three-month yield, but with larger values of 7 than in fig.
1. Yield calls can actually be perverse hedges against shifts in the yield curve
for longer-maturity calls. This property is particularly important for the active
interest-rate-cap market, since a typical cap agreement might involve calls on
a short-term yield with option maturities ranging from 5 to 30 years. In

“This follows since C(Yy, 7,0) provides an upper bound for C(Yz, 1, K) and because
lim C(Yy,7,0)= llm §D(T)YT—0

Yp—ow

where the second equality follows from the Reimann-Lebesgue lemma.
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Fig. 2. Examples of the values of calls on the three-month Treasury-bill yield plotted as

functions of the three-month Treasury-bill yield. The model parameters used are « = 0.06,

B =100, and o* = 0.01. The underlying strike price for the calls is 0.07. The call maturities (tau)
are 2, 4, and 6 years, respectively.

addition, fig. 2 shows that there is some critical value of Y, at which changes
in Y leave the call value unaffected. This means that for some values of Y7,
an uncovered position in an in-the-money yield call can be perfectly hedged
or immunized against interest-rate risk. Furthermore, it is possible to hedge a
long-call position with another long call in some situations.

Fig. 2 also shows that calls on yields need not be increasing functions of
the life of the option. In fact, for some values of Y7, the value of a yield call
can increase as 7 increases, but can then decrease as r increases further. The
intuition for this comparative-statics result is similar to that for the relation
between call values and yields. As 7 — «, the discount factor approaches zero
while the expected payoff for the option remains bounded because of the
mean-reverting behavior of Y. Thus, the call must eventually become a
decreasing value of r since its price converges to zero as 7 increases without
bound.

Finally, we consider the relation between the call value and the underlying
riskiness of changes in Y, which is governed by the parameter o2. In
contrast to the Black—Scholes option prices, yield calls need not be increas-
ing functions of the variance of changes in Y, as measured by . The reason



F.A. Longstaff, Valuing options on yields 107

is again related to the mean reversion in Y. As shown by Cox, Ingersoll, and
Ross, discount bond prices are increasing functions of o?. However, in-
creases in o2 also tend to reduce the long-term mean of Y;. For small values
of Y, the first effect dominates, whereas for larger Y, the opposite is true.
The remaining comparative-statics results for yield calls are indeter-

minate — call values can be either increasing or decreasing functions of «, B,
and 7. ‘

2.2. Yield puts

The payoff function for a put option on Y is max(0, K — Y7). The value of
this put option P(Yy, 7, K) is obtained by using the put—call parity relation
for yield options,

P(Y;,7,K)=C(Y,7,K) +KD(7) — C(Yz,7,0). (5)

This put-call parity relation differs from that for options on traded assets.
Again, this is because the value of a portfolio that pays Y. at time 7 is not
the current value of Y, but the value of a call option on Y, with a strike
price of zero. As with yield calls, the value of the yield put is a function of
two yields, Y. and Yy, and captures the level of the yield curve at two points.

Many of the analytical properties of puts on yields are similar to those of
yield calls. For example, since Y;> 0 in this valuation setting, the upper
bound for a put on Y, is KD(7), which converges to zero as 7 — «. Thus,
yield puts are not monotone increasing functions of the option’s maturity — as
7 increases without bound, the yield-put price must eventually decline. As for
yield calls, yield-put values converge to zero as Y, — . However, differenti-
ating the yield-put price with respect to Y, shows that the price is always a
decreasing function of Y. The reason is that an increase in Y; decreases
both the present value of the payoff from the put and the amount of the
payoff itself. In this respect, yield-put values are similar to Black—-Scholes put
prices, which are also monotone decreasing functions of the underlying price.
Finally, an increase in the underlying volatility parameter o® can either
increase or decrease the value of the yield put. In addition, the signs of the
partial derivatives of the yield put with respect to the parameters «, 8, and T
are indeterminate.

2.3. Options on average yields

Rather than providing an option on a specific yield, some types of yield
options are based on the average of several yields. For example, the CBOE
LTX options are European calls and puts on the arithmetic average of the
yields on 7-, 10-, and 30-year Treasury notes and bonds. The linear relation
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between yields of all maturities in this valuation framework allows us to use
the earlier results for calls and puts to derive closed-form expressions for
options on average yields.

To show this, let Y7, and Y, be the yields for maturities T, and T,
respectively, where T < T,, and assume that we are interested in pricing an
option on a weighted average of the two yields wY,  + (1 —w)Yr, where
0 <w < 1. The payoff function for a call on this average is max(O wYr +
(1 =w)Yz, — K). From (2), we can express Yy, as a linear function of YT ,

Yr =co+c Yy, (6)
where

_ A(TI)B(TZ) “A(Tz)B(Tl)
o B(T>) ="

B(Ty)
(T3)

c,= > 1.

oy

We could also express Y7, in terms of Y7, which would lead to the option on
the average yield’s bemg represented as a portfolio of options on YT The
options on YT could potentially have negative exercise prices, however This
poses no real difficulties, since options with negative strike prices can be
valued using (4) by setting ¢ = 0. Substituting (6) into the payoff function for
the call gives max[0, (wc, +[1 — w])YT2 ~ (K — we)] which can also be written

(N

[1+w(c1—1)]max(0,YTz— K= weg )

1+w(c,—1)

Observe that the payoff for the call on the average yield is identical to the
payoff from holding [1 + w(c; — 1)] interest-rate calls on Y, with strike price
(K ~wey)/[1 +wlc; — 1] - a call on the average is equlvalent to a portfolio
of calls on Yr,. Thus, the value of the call on the average is simply

(8)

[1+w(c, - 1)]C(YT2,T K weg )

"1+ w(c,—1)

Note that if T) — T, then ¢y — 0, ¢; = 1, and the value of a call converges to
C(Yr,, 7, K). Similar arguments can be used to show that the value of a put
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on the average yield is

K—wc,

[1+w(c,—-D]P|Y.,7, "T+w(e,—1) |

)

These results hold for options on averages of two yields. The analysis is
easily generalized, however, to value options on the average of more than two
yields. These options can be represented as portfolios of options on the
longest-maturity yield.

2.4. Options on yield spreads

An increasingly popular type of yield option consists of calls and puts on
the spread between the yields of two different maturities. For example, the
SYCURVE options recently introduced by Goldman, Sachs & Co. are calls
and puts on the spread between two yields, typically a short-term yield and
an intermediate- or long-term yield.

The above approach for pricing options on average yields can be applied to
value options on yield spreads. As an example, assume that we wish to value
an option on the spread between Y, and Y;. If K=0, the payoff function
for this claim is simply max(0, Y7, T, Y ) This option can also be viewed as an
exchange option on Y7, [see Margrabe (1978)]. Using (6), the payoff function
for this claim can be expressed as max(0, — cq + (1 —¢,)Yr), or alternatively
as

c
(¢;— 1)max(0, —l—:o—c—l— - YTz)‘ (10)

However, this is just the payoff function for a portfolio of puts on Y7, with
strike price ¢,/(1 — ¢,). Thus, the value of this yield-spread option is

(c —1)P( Tz’T’TE—géj)' | (11)

As T, — T,, the value of this option converges to zero. This is intuitively
clear, since the right to exchange a variable for itself is worthless. Similar
reasoning can be used to show that the value of an option on the spread

SIf K#0, then the payoff function is just max(0, — K — co+ (1 — ¢)Yr,) and the following
analysis can be applied to value the option (making the obvious modification in the strike price).
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Y7 — Yy, is given by
Co
(cl_l)C(YT29Ta_1_;C_;)- (12)

Finally, it can be shown that a contingent claim with a payoff function equal
to the maximum of the two yields Y, and Y;, can be replicated by a
portfolio consisting of a call on Y, and an exchange option on Y7,. Thus, the
value of a claim that pays max(Y,Yr,) at maturity 7 is just

Co
C(lYTl,'r,O)+(cl—l)P(YTZ,T,—l———). (13)
~¢,

Similarly, the value of a claim that pays min(Y7,, Y7) is

Co
C(YTI,‘BO)—(Cl—l)C(YT2>T,1—C—)~ (14)
g

3. The data

The valuation results derived in this paper have many potential applica-
tions. To examine the empirical implications of the results, I focus on the
valuation of the recently introduced options on the 13-week U.S. Treasury-bill
yield traded on the CBOE. These options are of particular interest because
they have a European-style exercise feature and their market prices can be
readily observed. Although this market may not be as large as some interest-
rate option markets, trading in these options has been significant. The most
important reason for studying these options, however, is the insight they
provide into the pricing of yield options that are implicit in other contingent
claims and do not have directly observable prices.

These yield options began trading on June 23, 1989. The underlying index
for the options is 1,000 times the yield (annualized discount rate) on the most
recently auctioned 13-week U.S. Treasury bill. For example, if the yield on
the 13-week T-bill is 0.0745, the index is 74.50. The strike price intervals are
in units of 2.5 index points. The options are cash-settled on the basis of the
index-strike differential at the expiration date of the option. For example, if
the strike price is 77.5 and the index level is 80.0, the payoff from a call
option is 2.5. Option premiums are quoted in 1/16s for prices below 3, and
in 1/8s for all other prices. A monthly and a quarterly cycle of expirations
are listed and options expire on the Saturday following the third Friday (last
trading day) of the expiration month.
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Price data for the June 1989 to December 1989 period were collected from
the Wall Street Journal. During this period, 40 calls and puts were traded,
with expiration months ranging from July 1989 to January 1990. Table 1
presents summary statistics for the data. To avoid data problems arising from
thin trading, I include call prices only if the total call volume for that day
exceeds 200, and similarly for put prices. As shown, the sample consists of
286 call prices and 174 put prices. In 107 cases, simultaneous call and put
prices are available. The average daily volume (for days included in the
sample) is 528.8 for calls and 582.2 for puts.

4. Empirical results

In examining the empirical implications of the yield-option-pricing model,
I focus first on the relationship between the prices and intrinsic values of
yield calls for the 13-week Treasury-bill yield options traded on the CBOE.
Next, I examine the put—call parity relationship using yield-option prices. I
then use Rubinstein’s (1985) approach to test whether the yield-option model
developed here has any systematic pricing biases. Finally, I examine the
magnitude of the model’s pricing errors.

4.1. Lower boundary results

Merton (1973) shows that the lower boundary for the price of an in-the-
money call on a traded asset is equal to the underlying asset price minus the
present value of the strike price. This lower boundary is greater than or equal
to the intrinsic value of the call: Merton’s results imply that European call
prices cannot be less than the option’s intrinsic value. As discussed earlier,
however, the yield-option-pricing model implies that call values can be less
than their intrinsic value max(0, Y, — K). Furthermore, since C(Yy, 7, K) — 0
as Y, — o, the price of a sufficiently deep-in-the-money yield call must be
below its intrinsic value.

Fig. 3 plots the prices of the 13-week Treasury-bill calls as a function of
their ‘moneyness’ as measured by the difference Y, — K. Most of the in-the-
money call prices are below their intrinsic value. Specifically, 144 of the 191
in-the-money call values — 75.4% — are below their intrinsic value. The mean
difference between in-the-money call prices and the intrinsic value is —1.41.
This difference is highly statistically significant, with a z-statistic for the mean
of —10.46. Note the strong similarity between fig. 3 and the values of
short-term calls on the three-month riskless yield shown in fig. 1.

These simple but striking results are consistent with the yield-option-pric-
ing model developed in this paper. On the other hand, these results are
incompatible with the frequently used approach of assuming that Y, is the
underlying asset price and applying the Black—Scholes formula — usually with
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Fig. 3. CBOE 91-day Treasury-bill yield-call values for the June 1989 to December 1989 period

plotted as a function of the moneyness of the options (the 91-day Treasury-bill yield index minus

the strike price of the option). The 45-degree line is the intrinsic value for the in-the-money
calls. 286 observations.

some adjustment to the variance of the yield process — to value options on
yields.® This follows because there is no possible implied variance for the
Black—Scholes model consistent with call prices that are below the call’s
intrinsic value. A similar criticism is applicable to the related approach of
assuming that the forward rate F,, for the period from time 7 to 7+ T is a
forward price, and then using the Black (1976) model for options on
futures — over 69% of the in-the-money calls violate the lower bound
D(r)(F,;— K) implied by the Black option-pricing model [see Black’s (1976)
eq. 16]. As discussed by Sundaresan (1990), forward rates are fundamentally
different from forward prices, because a forward rate is earned over time,
whereas a forward price applies to a specific point in time. Applying the
Black model to forward rates to value options on yields ignores this funda-
mental difference.

®For example, see Hull (1989, pp. 260-265) for a discussion of several ways in which the
Black—Scholes (1973) option-pricing model and the Black (1976) futures-option-pricing model
have been modified and applied to value yield options. Also see Goldman, Sachs & Co. (1989).
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4.2. Put—call parity

Let X denote the deviation from the traditional put—call parity relation,
X=P(Y;,7,K) - C(Y;,7,K) —KD(1) + Y. (15)

If Y; were the price of a traded asset, then standard arbitrage considerations
would imply X = 0. Merton (1973) shows that this result is distribution-free.
The yield-option-pricing model derived in this paper, however, implies that
X need not equal zero in general. Specifically, from (5),

.X‘:YT_C(YT,T,O). . (16)

Although the precise value of X implied by the yield-option model depends
on the model’s parameters, several general statements about the properties
of X follow from the comparative-statics results derived earlier. For exam-
ple, differentiating C(Y7,7,0) with respect to r implies that X can be
negative, but only for small values of 7. As 7 increases, however, C(Y;,7,0)
converges to zero independent of the value of Y. Thus, while X may be
initially negative, the model implies that X must eventually be a positive and
increasing function of r.

Fig. 4 plots the values of the deviations from the put—call parity relation as
a function of the days to expiration for the 13-week T-bill yield options. As
illustrated, the relation of the deviations to the life of the options is
consistent with the implications of the model. For example, only the
shortest-maturity options lead to negative values of X. The deviations are
positive and strongly positively related to maturity for the remaining options.
The mean deviation from the put—call parity relation is 3.3387. The ¢-statistic
for the mean is 14.02. The correlation between the deviations and 7 is 0.8597.
This evidence of systematic deviations from the standard put—call parity
relation is again consistent with the implications of the yield-option-pricing
model but inconsistent with pricing models in which the underlying state
variable is the price of a traded asset or a forward price.

4.3. Bias tests

The preceding results provide general support for the empirical implica-
tions of the yield-option-pricing model of this paper. It is also important,
however, to examine the specific pricing implications of the model. I use an
approach similar to that of Rubinstein (1985), who tests several stock-
option-pricing models by examining whether implied volatility estimates are
systematically related to variables such as the strike /stock-price ratio or the
time until expiration. In these tests, I also infer the parameters of the pricing
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CBOE 91-day Treasury-bill yield options for the June 1989 to December 1989 period plotted as
a function of the number of days until expiration for the options. 107 observations.

model from the data and then test whether the model is misspecified by
examining whether the implied values display any systematic relation to other
variables. An important advantage of this approach is that it provides specific
information about the model’s biases.

Recall that the model has three parameters — a, 8, and o2 In principle,
implied estimates of these parameters can be obtained in a straightforward
manner from the prices of three interest-rate-sensitive contingent claims. For
example, estimates of a, B8, and o? could be obtained from the price of a
T-maturity option on Y, and the prices of the discount bonds with maturities
7 and 7+ T. Rather than inferring the values of all three parameters from
the data, however, I use the following equivalent procedure in the empirical
tests. First, I select realistic values for the parameters « and B. Conditional
on these values, I then infer a value of o2 for each option in the sample.’
Next, I test whether these implied estimates of o2 display systematic biases. I
then repeat the procedure for another choice of the parameters a and B.

"In rare instances, there may not be a unique solution for o2 because of the complicated
relation between o2 and the yield-option price. In these cases, the extraneous solutions can
usually be discarded on economic grounds because they are implausibly large.
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This test approach has a number of advantages. For example, it allows me to
determine the sensitivity of the test results to different choices of parameters.
In addition, since only one parameter is implied from the data, any pricing
error is concentrated in the o2 estimates, leading to tests that are potentially
more powerful. Finally, this approach makes it possible to test for biases
using simple and easily interpreted univariate regressions, rather than more
complex multivariate regressions. ,

I test for four possible types of pricing bias, by regressing the implied
values of o? obtained from the 13-week T-bill call and put prices on the
13-week T-bill yield Y7, the option’s life 7, the degree to which the option is
in or out of the money Y, — K, and the absolute value of Y, — K. Including
these last two variables provides a test for linear and nonlinear strike price.
biases. And, by using the estimated value of o2 as the dependent variable in
the regression, I avoid the possibility of sampling or measurement error in o2
causing an errors in variables problem. The regressions are estimated by
ordinary least squares using a standard Cochrane—Orcutt procedure to guard
against serially correlated errors. Because of the possibility of conditional
heteroskedasticity in the residuals, all #-statistics reported are based on the
White (1980) heteroskedasticity-consistent estimate of the covariance matrix.
To minimize the possibility of outliers, I restrict the tests to options with ten
or more days until expiration. This reduces the sample size slightly, to 234
calls and 151 puts. The values used for @ and B8 in the tests are consistent
with a long-run average value of Y, in the range from 0.04 to 0.06 and a
first-order serial correlation for monthly observations of Y, in the range from
0.90 to 0.95.

Table 2 summarizes the implied values of o and presents the regression
results for the yield calls. The average value of the o2 estimates ranges from
0.00232 to 0.01001. These values are consistent with an unconditional vari-
ance for the riskless rate ranging from about 80 to 120 basis points, which
agrees well with recent interest-rate behavior. The standard deviations for
the o? estimates are similar to the means.

The results show some evidence of systematic bias in the option-pricing
model. In particular, the bias related to the level of the 13-week T-bill yield is
statistically significant in all of the regressions. This uniformity suggests that
the bias is probably due to an actual misspecification of the model rather
than to the choice of o and B. Part of the apparent misspecification,
however, could also be due to the bid-ask spread implicit in the observed
transaction prices. If the bid—ask spread is related to the level or volatility
of yields, some yield bias might be introduced into the data [see Phillips and
Smith (1980)]. The other sources of bias are not robust to the choice of the
parameters. Y — K and its absolute value are significant in only two of the
six regressions.

The bias accounts for only a very small part of the total variation in the
implied values of o? For example, the adjusted R? coefficients for the
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Table 4
Summary statistics for the pricing errors of the yield-option-pricing model.*

Yield calls Yield puts

Mean percentage

pricing error 2.228% ~5.963%
Std. dev. of mean '

percentage error 3.575% 4.632%
t-statistic 0.62 -129
Root mean

squared error 4.212% 7.551%
Correlation of model

and actual prices 0.905 0.932

*The model prices are computed using the parameters « = 0.05, 8 = 1.00, and o2 = 0.004.
The model prices are then compared with the actual prices of the options. Options with fewer
than ten days until expiration are excluded. This results in a sample of 234 call prices and 151
put prices.

The percentage errors are computed in relation to the model price.

regressions range from 0.035 to 0.117 with a mean of 0.068. These adjusted
R? coefficients, in conjunction with the standard deviations of the o? esti-
mates and the low elasticity® of the call price with respect to o2, suggest that
the pricing effects of the model’s bias are small.

" The results for yield puts are summarized in table 3. In general, the results
are similar to those for yield calls, For example, the yield bias is significant in
five of the six regressions, and inferences about the significance of Y, —K
and its absolute value are again parameter-dependent. The maturity of the
yield put, however, is significant in four regressions. Although the adjusted
R? coefficients are roughly twice as large as for the yield-call regressions, they
are still fairly small in absolute terms, averaging 0.134. Comparing table 2
with table 3 shows that the implied values of o2 from yield calls and yield
puts are roughly comparable on average, but can differ for specific parameter
values. When a = 0.05 and B = 1.00, the average estimate of o2 is approxi-
mately 0.004 for both calls and puts.

4.4. Pricing errors

To provide some information about the magnitude of the pricing errors of
the model, I use the parameter values a = 0.05, 8 = 1.00, and o = 0.004 to
compute model values and compare these with actual prices. These in-sample
results are summarized in table 4. As shown, the model tends to overprice

8For example, numerical estimates of the elasticity of in-the-money yield calls with respect to
o? - using the parameters a = 0.05, B = 1.00, o2 =0.004, T=0.25, and 7= 0.1 - range from
approximately 0.20 for calls that are 50 basis points in the money to 0.05 for calls that are 100
basis points in the money.
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calls by about 2.22% on average. The ¢-statistic for this difference is only
0.62, however. In contrast, the model underprices put options by approxi-
mately 5.96%. The t-statistic for this error is —1.29. The larger error for puts
is consistent with the implications of the bias tests. The correlation of actual
option prices with the option prices implied by the model is 0.905 for calls
and 0.932 for puts. Although the option-pricing model does have some
systematic pricing error, it performs fairly well on average.

5. Conclusion

The pricing of options on the level of yields is important because yield
options are incorporated into a wide variety of commonly encountered
contingent claims. I derive closed-form expressions for European calls and
puts on yields using an extended version of the Cox, Ingersoll, and Ross
(1985b) term-structure model. This approach has the important advantage of
expressing interest-rate-dependent contingent-claim values in terms of yields.
This allows the pricing model to capture the level of the yield curve at the
most relevant maturities. I show that options on average yields and options
on yield spreads can be represented as portfolios of yield options.

The analytical properties of these options are very different from those of
options on traded assets. This is because the underlying yield need not follow
a martingale under the risk-neutral pricing process. As examples of the
differences, I show that yield calls can be worth more than the underlying
yield or worth less than the call’s intrinsic value. The comparative-statics
analysis indicates that yield calls can actually be perverse hedges against yield
changes and are not monotone increasing functions of their maturity or of
the volatility of interest rates.

To examine the empirical implications of the model, I focus on the pricing
of the recently introduced options on the 13-week Treasury-bill yield traded
on the CBOE. I find that over 75% of the in-the-money call prices in the
sample are below the intrinsic value of the options, which is consistent with
the pricing model derived here. In addition, the deviations from put-call
parity are positively related to the life of the options, as implied by the
model. Using a technique similar to Rubinstein’s (1985), I test for bias in the
implied values of the model’s volatility parameter. I find some evidence of a
yield bias, but its explanatory power is small in economic terms. I then
examine the model’s pricing errors and find that the average mispricing is
about 2% for calls and 6% for puts. Neither of these differences is statisti-
cally significant.

This analysis provides a number of important results and insights into the
behavior of yield-option prices. This topic merits further study and research,
however. The option-pricing literature focuses primarily on options on traded
assets, but yield options have the potential to become even more significant
for financial markets than stock options. :
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