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Abstract

Even in the face of deteriorating and highly volatile demdinchs often invest in rather than
discard aging technologies. In order to study this phen@mgwe model the firm’s profit stream
as a Brownian motion with negative drift. At each point in¢inthe firm can continue operations,
or it can stop and exit the project. In addition, there is a-tme option to make an investment
which boosts the project’s profit rate. Using stochasticudak, we show that the optimal policy
is characterized by three thresholds. There are investamehexit thresholds before investment,
and there is a threshold for exit after investment. We alfecefi comparative statics analysis
of the thresholds with respect to the drift and the volatitif the Brownian motion. When the

profit boost upon investment is sufficiently large, we find arter-intuitive result: an increase
in volatility induces the firm to invest earlier.
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1 Introduction

The computer disk drive industry underwent a series of gisra architectural innovations (Chris-
tensen 1992). Until the mid-1970’s, 14-inch hard disk dsig@minated the mainframe computer
disk drive market. Between 1978 and 1980, several new dstirdnoduced 8-inch disk drives which
were initially sold to minicomputer manufacturers becatiser recording capacity was too small
and the cost per megabyte was too high for mainframe congputes the performance of 8-inch
drives kept improving, the entrants quickly encroachednuip@ mainframe computer market. By
the mid-1980's, 8-inch drives dominated the mainframe miaakd rendered 14-inch drives obso-
lete. Nevertheless, among the dozen or so established awdntdrs of 14-inch drives, two thirds of
them never introduced 8-inch drives. Instead, they coertino enhance the recording capacity of
the extant 14-inch drives in order to appeal to the higherreathframe market (Christensen 2000,
p. 19). Eventually, all 14-inch drive manufacturers, exadpse that were vertically integrated,
were forced out of the disk drive market. This pattern of stdgrwide disruption emanating from
the introduction of a successful new technology is a comrameprather than an isolated incident;
as such, it deserves serious attention. Even 8-inch driees eventually superseded by 5.25-inch
drives. Currently, the computer disk drive industry is ie gorocess of yet another architectural
transition, one from hard disk drives to flash solid stat&sl{sised in USB stick drives).

This paper focuses upon the difficult investment and exitsii@es of a firm facing a declining
profit stream. With the onslaught of disruptive technolagionovation, as in the example of the
disk drive industry, a firm employing an extant technologyefaa deteriorating profit stream due to
declining demand and/or prices. Faced with a profit streantths eroded, it might be optimal for
the firm to cease operations and avoid recurring losses. @utlier hand, if the erosion has not been
too large, then it can be optimal for the firm to make an addéionvestment in the project. The
pressing question is when, if ever, to invest and when to &xuit ought to occur when the current
profit rate is sufficiently negative; a negative value of thmefip rate, however, is not a sufficient
condition to induce exit as the option to cease operationsetime in the future must be taken
into account. Likewise, a firm must invest in its operatiamsiitimely fashion before the desirable
investment opportunity vanishes. In a highly volatile @miment such as in the disk drive industry,
however, it is difficult to calculate the optimal time to ist@r exit because of the uncertainty in the
future demand. After we obtain the optimal policy, we exaartiow increases in uncertainty affect
the optimal policy.
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In light of the declining demand, it seems counter-int@tte invest in the current operation.
However, in the example of the computer hard disk drive itrguthe manufacturers of 14-inch disk
drives continued investment even though they faced a desting profit stream and, as it turned out,
eventual displacement from the industry. Christensen@fi0ds such examples in the mechanical
excavator industry and the steel mill industry as well.

The two salient features of our model are the possibilityxif @d a declining stochastic profit
stream. In particular, the firm can exit at any point in timed ave model the firm’s uncertain
profit stream as a Brownian motiofy with drift u and volatility c where bothu ando are time-
independent constants known to the firm. Of course, the jdisftthe average rate of change in the
profit rate, and the volatility measures the underlying uncertainty. Although the sigherift y
is unrestricted, we give special attention to the case irtlmhis negative. With this representation,
the firm’s cumulative profit is the time-integral of the Brosan motion. The investment and exit
decision rules of the firm are stopping times for the Browmiaotion, and we utilize the well-known
machinery of stochastic differential equations (Okse2@&i3) to find the optimal stopping times.

In Sec. 3, we present the basic model in which investmenttipogsible. At each pointin time,
the firm must decide whether to continue operations or icality exit the project. The firm seeks
to maximize its expected discounted cumulative profit becaig the optimal time at which to
exit, wheret is a stopping time for the Brownian motion. In Sec. 4, we shuat the optimal policy
is a threshold rule: it is optimal to continue operationsiuhe profit rateX; falls below a critical
threshold, at which time it is optimal to exit. The closed-form expiriessfor &g is a decreasing
function of g andao, and it reveals th&g is negative.

In Sec. 5, we extend the basic model to include a one-timertypity to invest in improving the
extant technology: at each point in time, the firm can (1) o operations, (2) stop and irrevoca-
bly exit the project, or (3) invest in the operations. Thessivnent increases both the current profit
rate and the drift of the profit stream by known quantitiesvibw of the investment opportunity,
the firm’s policy is specified by three stopping times. The finmst specify when to exit and when
to invest while the investment option is still availableth& firm already has made the investment,
then the firm must decide when to exit. Each stopping time &atterized by a threshold. If in-
vestment has not been made, it is optimal to exit whenevepritig rate falls below a threshokg,
and it is optimal to invest if the profit rate rises above a sedbreshold,;. When the current profit
rate is betweeldg and¢,, it is optimal to maintain thetatus quo continue operations but do not
invest. Because there is only one opportunity to investy aftvestment, the firm’s decision problem
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reduces to that of the basic model, albeit with differenttdefter investment, the firm exits when
the current profit rate drops below a third threshid

After finding the optimal policy, we effect a comparativetstsanalysis of the thresholdsand
&e with respect tqu ando. Although it is intuitively clear that the optimal policy haracterized
by thresholds, the comparative statics analysis is nagsttfarward. In order to obtaif; and¢g,
we first need to solve an optimal stopping time problem witbvaard which depends on the return
from investment. The complication is that the return fromestment in turn depends on bgih
ando because the firm will continue operations prior to eventudl &levertheless, we have been
able to effect a comparative statics analysis using a pexeansion method without resorting to a
numerical analysis.

Regarding the comparative statics of the threshold forstment §;), we might be able to derive
some useful insights from real options theory. Real optibasry has shown that, under certain mild
conditions, it is optimal to wait longer before making aruocable investment if the volatility of the
underlying asset increases (Dixit 1992). Waiting and olisgrthe evolution of the value of the asset
enables the investor to avoid the downturn risk and takeradge of the upturn potential. In accord
with this intuition, we anticipate th&; increases iro because the upturn potential of the profit
stream increases io. Indeed, if the boost in the profit rate upon investment islsemugh, then
& increases i as expected. Surprisingly, if the boost is sufficiently &rtheng, decreases io.
This seemingly counter-intuitive result obtains because¢turn from investment rapidly increases
in o due to the post-investment option to exit. In the operatiomsext, this comparative statics
result offers cautionary advice against blindly followitige intuition inherited from real options
theory. See, for example, Bollen (1999) who shows that iftteeluct life cycle (demand dynamics)
is ignored, then the conventional real-option techniqueseo undervalue capacity contraction and
overvalue capacity expansion.

This paper is organized as follows. We review related liteeain Sec. 2 and formally present
our basic model in Sec. 3. The analysis of the basic modelowithn investment opportunity is
performed in Sec. 4. The basic model is extended to incluédrvestment opportunity in Sec. 5;
Sec. 5.2 is devoted to the analysis of the extended modellyLag effect the comparative statics
of the thresholds in Sec. 5.3.
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2 Related Literature

There is rich literature on technology and process adop(iee, for example, Bridges et al. 1991
for a review.) In an early paper which formulates technolaggption as an investment problem,
Barzel (1968) uses the net-present-value approach tornothtaioptimal timing of a one-time in-
vestment in adoption of technology when the future profitastn is deterministic. In the context
of process improvement, Porteus (1985) uses the EOQ modelinine the economic trade-offs
between the cost of investment which reduces the setup rdgha benefit from the reduced setup
cost: the optimal policy is to invest if and only if the saleseris above a threshold. Porteus (1986)
extends this work by examining a model in which lower setugigtead to improved quality control
(lower defect rate).

An objective of the current paper is to obtain investmentexitipolicy under uncertainty. Many
papers have modeled technology adoption as a stopping tioldepn. (See, for example, Hoppe
2002 for a survey of literature.) For example, Balcer ancphipn (1984) study the optimal time to
adopt the best currently available technology when m@tgaoptions are allowed. In their model,
thetiming and thevalueof future innovations is uncertain although the profitapitif the currently
available technology is known. They show that it is optintahtlopt the best currently available
technology if the technological lag exceeds a thresholdiwbepends upon the multi-dimensional
state: the elapsed time since last innovation and the paplity) of technological progress.

There is substantial literature on Bayesian models of invest and exit. Jensen (1982) develops
a decision-theoretic framework of technology adoption mvige profitability of the technology
is uncertain. In his model, a firm considers adopting a teldgyowhich is either a success or
a failure. The probabilityd of success is unknown to the firm, but it takes one of two known
values. In each period, the firm costlessly observes a Bérnaudom variable with the parameter
0, updates its belief regarding the valueboind decides whether to adopt the technology. Adoption
of a successful (unsuccessful) technology produces aiysitegative) profit, and all returns are
discounted. The optimal policy is a threshold rule with exggo the posterior probability thét
takes the higher value: adopt the technology when this fmibtyais sufficiently high. McCardle
(1985) extends Jensen’s work by studying a model where ibs$lycto acquire information on
the uncertain profitability of the technology. In McCardlehodel, the firm must pay to observe
Bernoulli random variables which allow the firm to updatelidief concerning the technology’s

profitability (which can assume a continuum of values rathan two as per Jensen). At each
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point in time, the firm can continue acquiring informatiameversibly adopt the technology, or exit.
The optimal decision rule is characterized by two (upper lamgr) thresholds with respect to the
expected profitability. Later, Mamer and McCardle (19874gard McCardle’s work by studying the
same model with competition which is either substitute anptementary, and they obtain Nash
equilibria.

Exit policies have been also studied via a Bayesian deciiearetic approach. Ryan and Lipp-
man (2003) study optimal exit policy under imperfect infaton on the profit stream. They model
the cumulative profit as a Brownian motion in which the dnftaumulative profit is one of two
known constants; the higher drift is positive and the lowedt & negative. The decision-maker
updates his belief about the value of the drift by observirggrealized profit at each point in time.
Using stochastic calculus, they show that it is optimal td @ken the posterior probability that
the drift is negative is high. Ryan and Lippman (2005) extdmnsl model by allowing the drift to
drop to the lower value after an unobservable exponentred.tBy observing the realized profit, the
decision-maker updates his posterior probability thapitedit stream has dropped. The optimal exit
decision in this model is also a threshold rule with respetthé posterior probability.

One focus of our paper is the impact of uncertainty on thestmient and exit decisions. Dixit
(1992, p. 108) points out that, as uncertainty increasesojitimal to wait longer before investment
if (1) the investment is irreversible, (2) the uncertaintgarding the investment is being resolved
gradually in time, and (3) the investment can be flexibly posed. In this vein, McDonald and
Siegel (1986) study investment in an asset whose value aoel @volve as geometric Brownian
motion. They find that the optimal policy is a threshold ruliéwespect to the ratio of the value to
the price of the asset. Moreover, the investment thresinalegases in the volatility: it is optimal to
postpone investment longer as the uncertainty increases.

A number of papers address the effect of uncertainty on tdolgg adoption using the real op-
tions approach. Essentially, they confirm the conventiartaition regarding the value of waiting.
Farzin et al. (1998) study the optimal time to irreversibijtsh to new technology when the value
and the arrival date of future improvements are uncertairthéir model, the improvement in the
value of the currently available technology follows a compad Poisson process. They allow mul-
tiple investments in technology; again, the optimal poigya threshold rule. In particular, they
find that the pace of adoption is slower with the real-opticgthnd than with the suboptimal net-
present-value method. Alvarez and Stenbacka (2001) aésthageal options approach to study the
optimal time to adopt a technology with an opportunity fopirovement after adoption. Once the
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firm adopts the technology, it receives a revenue streamhmviclves stochastically over time: at an
exponential time, an improved technology becomes availbthe firm. They show that increased
market uncertainty (volatility) increases the real-opti@lue of adopting the initial technology.

The real options method has also been applied to exit in aalygame when the profit stream
is stochastic. Fine and Li (1986) find a Nash equilibrium iopging times in their discrete-time
duopoly game of exit from a market with declining stochadémand. Murto (2004) studies a sim-
ilar duopoly exit game in an industry in which the declinirgntand follows a geometric Brownian
motion; he obtains Markov-perfect equilibria. Althouglesie two papers analyze a duopoly model,
they also consider the exit problem of a monopolist whichitslar to our basic model. Their focus,
however, is on the strategic interaction rather than on tieerainty.

In addition to the uncertainty in the profit stream, there tomplicating but salient feature in
our model: exit is possible after investment. Among the pafieat include this feature, McDonald
and Siegel (1985) study the valuation of a manufacturing &g a stochastic price for its output
product using option pricing techniques. In their moded, pihoduct price is a geometric Brownian
motion, and the firm can shutdown and re-open its plant witlbagt at any point in time. In
contrast, Dixit (1989) considers fixed cost of entry and.ekithis model, the firm can enter and
exit the industry as many times as the firm wishes, and thetmtofiam is a geometric Brownian
motion. He shows that it is optimal to invest if the profit reg@bove an upper threshold and exit if it
is below a lower threshold. He performs a numerical compagatatics analysis and finds that the
upper (lower) threshold increases (decreases) in theiltglain his model, the investment (entry)
decision can be exercised only by an inactive firm; of coufseexit decision can be exercised only
by active firms. Our paper studies investment and exit datssin a quite different model: the firm
has one opportunity to invest in its operations while beiativa in the industry, and it can exit at
any point in time. Moreover, our comparative statics resafe analytical.

In the literatures on technology adoption and on exit, thee paucity of work on investment
when the firm faces a declining profit stream. To our knowledige current paper is the first to
study the impact of uncertainty on investment in an on-ggrgject with an exit option available
both before and after an investment.
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3 The Basic Model

Consider a manufacturing firm whose product is produced avithging technology or process. Be-
cause of obsolescence, its profit stream is in decline (psrbacause a substitute product produced
with a new technology is encroaching upon the market). At@oiwt in time, the firm can stop the
project by permanently closing its production plant.

The firm, seeking to maximize the expected discounted vdlite profit stream over an infinite
horizon, must determine the best time to cease operatiahexanthe market. The firm’s profit rate
at timet is a random variabl&; where{X; :t > 0} is a stochastic process with continuous sample
paths whose law of motion we will specify shortly. We refefiq : 0 <t <1} as the firm'sprofit
streamwhere the stopping time <  is the time of exit. Even wheR[X;] is strictly decreasing in
t, there is a positive probability thag.., > X; for some timeu > 0. Consequently, it may not be
optimal to exit the industry the first tim§ hits zero.

We model the firm’s profit stream as a Brownian motion with ¢ansdrift 4 and volatility
o. Specifically, letX denote the profit at time with X = Xp+ ut+ oB; where{B; :t > 0} is a
one-dimensional standard Brownian motion, so the pro®asir has constant drift and constant
volatility 0. We pay particular attention to the casec O because our main focus is modeling a
declining profit stream. If the firm begins operations at timand exits at time,, the discounted
value of its profit stream iﬁtf e X dt, wherea is the discount rate.

To illustrate, suppose that the demadddper unit time for the firm’s product is a Brownian
motion with driftp/p, wherep is the sales price per unit, and tebe the fixed cost of operation per

unit time. Then the relationship between the demand andrtife ptream is linear:
X =pDr—c. 1)

4 Analysis of the Basic Model

In our basic model, at each point in time, the firm must elettegito continue operations or to exit
irrevocably. Because there is no investment opportunitig@basic model, the firm seeks a stopping

time t which maximizes

B et )
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whereE*[-] = E[-|Xo = X], the expectation conditioned ofy = x. (To be more precisgX; :t > 0}
is a one-dimensional Brownian motion adapted to a filtrafigp} of a probability spacéQ, 7,P).
The random variable is an element of7, the set of all non-negative stopping times with respect to
the filtration{ % }. When possible, we skip over measure-theoretic niceties.)

The objective function in Eq. (2) has no time-dependencerdtian through the proce¥sand
the discount factog—“t; hence, we can show directly (or use the argument of Oks@0@4, p. 220)
that the optimal policy is stationary: there is aBet R such that it is optimal to continue operations
as long asX; € D and stop when ¢ D. The setD is called acontinuation set D Throughout the
paper, we leta denote thdirst exit time of the process Xom the measurable set A

Ta=inf{t >0: % ZA}.
DefineRp(x), the expected return when using the stopping tigedy
D
Ro(x) = EX| / e 9tX,dlt], @3)
0

and letVp(x) denote the firm’s optimal return whedg = x. Because there is an optimal policy
which is stationary,
Vo(x) = sngD(X) = Rp+(X)

whereD* is the optimal continuation set. The optimal continuatiehis also determined bp* =
{X:Vo(X) > 0}, soD* is an open set becau$f(-) is continuous. We elect not to include the
boundary oD* in the continuation set.

Immediately below, we show th&* is an interval of the forn{§p,~): there is a thresholgp
such that it is optimal to exit immediately wheh < &g while it is optimal to continue operations as
long asX; > &o. Of course\p(-) is strictly increasing oriép,«). Interestingly, we present a closed
form solution fory and easily demonstrate thigt < 0. By relegating some of the technical details

to Appendix B, our proof does not require a background intsistic calculus.

Proposition 1: There is a numbefp < 0 such thaD* = (&g, »), where

2

(0)
- . 4
U+ /2 + 2002 )

o= —

H
o
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Moreover, the optimal return function¥(x) = 0 if x < &g and

1 U 0? —U— /K2 + 2002 .
Vo(x):a{x+a+“+\/mexp[ 52 (x—Eo)]}, ifx>&. (5)

Proof. We prove Proposition 1 in three steps: (i) We show that thev@ continuation set is of the
form (&, ) whereg < 0, (ii) we explicitly construct the return functidR .., (x) for any¢, and (iii)

we obtainé = &g that maximizeR(Eym)(x) and show thafg is a negative number.

(i) We begin by showing that the optimal continuationBé&is of the form(&, ). We first claim
that(0,) C D*. If not, there isx > 0 not inD* so thatVp(x) = 0. However, withA = (x/2, ), we
see that

TA X
Ra(x) = EX[/ Xe~dt] > o (1- Ee ™) > 0=\Vy(X),
0

a contradiction.

Next, we claim thaD* = (&, o) for someg < 0. If Vp(x) = 0 for all x < 0, thenD* = (0, ). If
Vo(x) > 0 for somex < 0, then(x,0] C D*; otherwise, there isa¢ D* such thax <y < 0. Using
the fact that{ X : t > 0} has continuous sample paths, we have

Tp* Tp*
Vo(X) = EX| /0 * Xe odt] < yEX| /O ” et < 0 < Vo(x)

a contradiction. Thuf)* = (&, o) whereg = inf{x: Vp(x) > 0} <O0.
(if) Consider the continuation s& = (§,). In Appendix B, we show thaRp(x), defined in
Eq. (3), satisfies the partial differential equation (PDE)

<at+uax+§°26§) (6 "Ro(x)] = —e~x forxe D, ©)

where we use the abbreviated notation for partial derieati f = df /0x. Appendix B also estab-
lishes thaRp(-) satisfies the linear bound

Ro(X) < (1+ X))o+ (|4 +0%)a 2. @)
Finally, because the profit rate is identically zero aftert @xhich is an irrevocable decision),

Rp(x) =0 forx < €.

10
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It is easy to verify that the functiof(-) given below satisfies Eq. (6) and (7):

—U— /12 2
V! \/;12+20(0 (x—8)]

forx>¢&,

(0 = o H(x+w/a) —o (& +p/a) expl

andf(x) =0 forx < &. Moreover, it is well-known that there isumiquesolution to the kind of PDE
given in Eg. (6) satisfying a linear bound as per Eq. (7) ardotbundary conditioRp (§) = 0 (see
Arfken 1985, Chapter 8). ThereforB ., (X) = f(X).

(iii) SettingdR ) () /d& = 0, itis straightforward to verify th& s ,)(X) achieves its maximum
for all x € R wheng = &g as given by Eq. (4).

To show tha€ < 0, note thap+ /2 + 2002 > 0 and observe that

o(h+ M2 +2002)&0 = — M(H+ /2 + 2002) —
=— (K2 +ao?) — /2 + 2002,

which is negative becaugg + ao? > —p/ 2 + 2002, [
It is intuitively clear that the firm will exit if its profit ra has deteriorated below some threshold,

but the fact that the threshold is negative is not obvious fHasorfy < 0 is that there is value in

waiting before taking an irrevocable action: everpik 0 and the current profit rate is slightly
negative, it is possible for the profit rate to turn positigethe future. If the profit stream were
deterministic and monotonically decreasing, then it wduddoptimal to exit when the profit rate
hits zero. This intuition regarding the value of waiting @esistent with the fact thdp increases to

0 aso — 0, which follows from Eq. (4) whep < 0.

The value of remaining in business while incurring losses been demonstrated in practice.
Apple Inc. was hemorrhaging money in 1996 and 1997 with ke$&0.8 and $1 billion, respec-
tively. Michael Dell, the CEO of Dell Computer, remarked “@ttwould | do? I'd shut it down and
give the money back to the shareholders.” (CNET News.conpliéc 6, 1997.) However, Apple
did not exit/shut down; instead, its fortunes improved datioally, and its split-adjusted stock price
increased from $5.48 on October 6, 1997 to $172.75 on Octbhez007.

Because we have a closed-form expressiorgdoit is straightforward to obtain its comparative
statics. For convenience, we first define

= (—u+ V2 +200%) /6> and Y= (—u—V/I2+200?)/0%. ®)

11
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The constantg, andy;, are the two roots of the quadratic equation:
1,
—0+y+ 50 Vv =0.
The quadratic equation is derived from the second-ordergpdifferential equation applied to the
exponential functiom . (9 + udy + 20202) exp(—at +yx) = 0.
Corollary 2: The threshold decreases ipando. Whenu < 0,0 1 0 aso — 0.

Proof. From Egs. (4) and (8), we have

1 1 [l

0péo = ——+ + , 9

0 = 4T \ee? et et 2007 ©)
—H— /2 + 2002 a

0f0 = Vg ot . (10)

YnO 202,/ 2 4 2002

After some algebra, we can show that

—u*lyzoz\/u2+2cx02+ VI2+2a024+p<0, (11)
—py/ 12 + 2002 — (W2 4 200°) +ao? < 0. (12)

The inequalities of Egs. (11) and (12) are independent o$idpe of .. Hence, both partial
derivatives o€, Egs. (9) and (10), are negative. Lastly, employ L'Hosfsitalle to verify
limg—0&o 1 0. L

The comparative statics &b is tightly linked to that olg(-). Becausé/y(-) is non-decreasing,
the threshold is determined gy = inf{x: Vo(x) > 0}. By this relation, if the value of the return
functionVp(-) is larger (smaller), thefq is lower (higher).

Corollary 3: The optimal return functiolp(-) increases i andp for x > &o.

Proof. We first examine the dependence\gf-) on a. Let Vp(x;0?) denote the optimal return
function and lefT > denote the optimal exit time when the volatility ¥f is 0. We introducd?;, a
one-dimensional standard Brownian motion which is indeenof the proces%. For anyo; > 0,

we have
2 X T"Z — ot X — ot
Vo(x;o):E/ Xe dt:E/ (% + 01By)e
0

12
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To2, 02 _
gEX/O "L (% + 01By ) e dt = Vp(x; 0%+ 03) .

Hence Vo(X) is non-decreasing ia®. In fact, it is easy to show th&(x) is strictly increasing iro.

From the closed-form expression\4f(x) and the inequality

M /H2+2002 a
aczyn =7 + Z — > O,
o o 02,/ + 2002

we can directly calculate

dVo(x)
002

= —(ayn) 20 2yn(x—Eo)e* %) > 0 forallx > &,

in agreement witld;2&o < O.
Similarly, letVo(x; 1) denote the optimal return function and Tgtdenote the optimal exit time
when the drift ofX; is p. Letx > &g so thafT, > 0. For anyd > 0,
Tu
(

.
Vo(X; W) = EX/ "X Otdt < EX/ X+ ot)e~tdt
0 0

X Tuss —at .
gE/O (X + 8ttt = Vo (x; p+3) (13)

Hence Vo (X; W) is increasing inufor x > &g in agreement with the comparative statics red&d/ op <
0. [
As o increases, there is more noise in the profit stream, so thexdarger upturn potential as
well as a larger downturn risk. However, the firm can take athge of the upturn potential while
avoiding downturn risk by exit. Hence, the return functiooreases ilw. Because an increasein
improves the profit streang, the returrRp(+) increases for each continuation Bet
Lastly, we examine the impact of adding a lump sum salvagee\steceivable at the time of
exit. If plant and equipment are sold upon exit, then we grdie s > 0. However, if there is
employee severance or liabilities associated with dec@sioning of the business, therc 0.

Proposition 4: LetV(-;s) denote the optimal return function whers the salvage value. Then
Vo(X;8) = s+Vo(x—as),

and the exit threshold &(s) = §p + as.

13
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Proof. Becausse %" = s— [j ase %dt,

Vo(X;9) :E"[/oT Xe Ot +se ME* = s+ EX[/OT(Xt —as)e %dt]

T
=s+ EX“S[/ Xie %dt] = s+Vo(x—as) .
0
Becausa/y(x;s) is increasing irs, the exit threshold is
&(s) = inf{x:Vo(x;s) > s} =&p+as.

[
In light of Proposition 4, in the remainder of the paper, wegaed withs = 0 without loss of

generality.

5 The Model with One Investment Opportunity

In this section, we consider the possibility of a once-ilifetime investment. For instance, manufac-
turers of 14-inch disk drives can, despite the writing onvlal, improve the performance (recording
capacity) of 14-inch drives in order to immediately booshded in the higher-end mainframe com-
puter market (Christensen 2000, p. 19). Of course, exitasiiable wheru < 0. The sign ofuis
unrestricted except in Sec. 5.3.

For analytical tractability, our model allows only one ist@ent opportunity. As suggested
by Fine and Porteus (1989), in practice, the firm might havdtipie opportunities for gradual
improvement in the technology/process. The impact of mlatinvestment opportunities is beyond

the scope of this paper.

5.1 The Model

We now include a one-time opportunity to implement an intiovewhich improves the quality of
the product or the process. The implementation cdstig. If the quality of the product improves,
then the demand for the product increases; moreover, thamtedeclines more slowly. Specifically,
the investment boosts the current profit rateblgnd increases the drift by In terms of Eq. (1),
investment induces an increasebah pD; (or, equivalently, a decreaselofn ¢) and an increase of

14
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din p-dDy/dt. If the firm invests at time, then the improved profit stream follows the process
Yi=X+0(t—1)+b, fort>T1

so thatd¥ = (n+ 0)dt+ odB:.
We examine the conditions under which it is never optimaht@st. Define

gza(/om(b—i—ét)e““dt—k):b-|—6/cx—ka (14)

so thatg/a is the net discounted gain from investment if exit never ogcu

Proposition 5: Let| be the set of states (profit rates) from which it is optimahtgest immediately.
Thenl is non-empty if and only ify > 0.

Proof. If g <0, we claim thaD* = (§g, ) andV1(x) = Vo(X): it is never optimal to invest. In order
to show that it is never optimal to invest, we compare therrefiunctions of two candidate policies.
The first candidate policy is to invest at some stopping tipend exit at another stopping time;

after investment, the policy is to exit at a third stoppingeit;. The return function of this policy is
T T
Ri(x) = EX[/ Xe dt+ 1{r.<rE}(/ (b4 5(t—1) +X)e dt—ke )],
0 T

wheret = 1) ATe. For convenience, we defimle =1 = 1 if Te < 1. The second candidate
policy is to never invest and to exit at timg = inf{t > 0 : X < &p}. Its return function idRy(x) =
EX[[o°Xe “dt]. Becausdy is the optimal time to exit in the absence of investment, weetthe
inequalityEX[foT Xe~otdt — [0 Xetdt] < 0 for any stopping timd . In particular, this inequality
holds forT = t41. Thus,

T1—T T T

Ru(x) —Re(x) ZEX[l{mE}em(/ 1 (b+5t)e“tdt—k>]+Ex[/ e dt - / "xeOtdt]
0 0 0
T1—T

1
SEX[]-{U <TE}e7GT (/0

(b+8t)edt— k)] < 7| /O " (b-+8t)e dt — K

=zg/a <0,

wherez = EX[1(;, ;& "] > 0; itis neveroptimal to invest ifg < 0.
Assumeg > 0, and suppose that it is never optimal to invest. By Prowsit, the optimal

continuation set iH* = (§p,) and the optimal return function ¥ (x). We compard/p(x) with

15
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the expected return from immediate investm¥ft(x+b) — k. Letto =inf{t > 0: X < &o} denote
the optimal exit time when there is no investment opporty@ind fixx > max{&; — b,&o}. Using

integration by parts, we have

\gu+m—k4M©zEﬁ£°

= —EX[(b/a +8/a” + &Tp/a)e "] +g/a.

T
(X + 8t +b)e dt —k— / "% td]
0

It suffices to show thaE*[e %] and E*[t1pe~“™°] converge to zero as— . For fixed§, we let
T=inf{t > 0:X% < &} denote the exit time from the intervl], »). Define f (x,t) = EX[e T]e" ™,
then by Eq. (25) and by the same argument given in AppendixrBufdbounded continuation
sets, we havee f(x,t) = 0. In addition,f(x,t) satisfies the boundary conditidii§,0) = 1 and the
boundedness conditiof(x,t) < 1. Then it is easy to verify that(x,t) = expyn(x—§) — at] for
x> &. Thus,EX[e 7] = en(*~&) — 0 asx — .

Becausere “' is a bounded function of, we can interchange the order of expectation and
differentiation to obtairEX[te %7 = —dEX[e" "] /da = —dqYn(x — &)e"*~8) . Replacingg with &g
andt with 1o, it follows thatEX[(b/a 4 8/a? + &tg/a)e%"0] is arbitrarily small for sufficiently large
values ofx. Hence V" (x+b) —k—Vp(x) > 0 for sufficiently largex, contradicting the assumption
| =0. |
In light of Proposition 5, we assunge> 0 for the remainder of the paper.

In the spirit of backward induction, we first examine the oyl policy after the firm has already
made an investment. Because there is only one opporturnitindestment, the post-investment

problem reduces to that of Sec. 4 except that the drift of tbétstream has changed. We define

W =p+3,
A=(—p" =/ (u")2+2002) /0% (15)

El:_ +/G—|—)\71,

wherept andé&; are the post-investment drift and the optimal exit threshmspectively. Hence,

after investment, the expected return as a function of tii@liprofit ratex is given by

-1 + a1 B
Vo' (x) = { o H{x+p"/a—A""expA(x—&1)]}, forx>&; |
0, otherwise

16
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We note tha€, < g because€y decreases ip.

Prior to investment, the firm needs to find the optimal stogpime t at which to invest or to
exit, whichever action results in a better payoff. If the firmests at tima, then its expected return
starting at timex is ;" (X; + b) — k because its expected cumulative profit stream after inverstm
is V" (% +b) and the cost of investmentls On the other hand, if the firm exits at timethen its
return starting at timeis 0. Hence, the firm receives the expected payoff of fitghi( X; + b) — k, 0}
at timet when it makes its investment or exit decision.

Letx™ be the uniqgue number which satisfies
Vo (xt+b) =k . (16)

(This definition uniquely determines™ becaus&/;" (x) is strictly increasing in for all x such that
V0+(x) > 0.) Then, at the optimal stopping timeit is optimal to exit ifX; < x™ and invest ifX; > x"
because/;" (x+b) —k > 0 if x > x™ andV;" (x+b) —k < 0 if x < x*. If the current profit rate

is x, then immediate investment and immediate exit both yietd expected return. Appendix C
shows that the optimal expected return is strictly positienX; = x*, so it is not optimal to invest
or exitimmediately wheb = x™. Hence X; # x*.

The optimal policy is stationary because neither the payeat{V,," (X +b) —k, 0} nor the profit
stream has any time-dependence other than thréughde . Thus, we only have to consider a
class of stopping times, = inf{t > 0: X ¢ D} expressed with respect to continuation $2td\e
can express the objective function as

T
Ro(x) = E| / ? et dt 1 & TOh(Xg, )] (17)
0
whereh(-) is the lump sum payoff defined by
h(x) = max{0,V" (x+b) —k} . (18)

In this new representation, the firm’s policy is to continge@tions as long a§ € D and to stop

as soon a¥; ¢ D, at which time the firm receivdyX;).
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5.2 Analysis

Our objective is to find the optimal return function
V1(X) = SUpRo(X) = Ro+ (X) (19)

and the optimal continuation sBt.. As before, we can show that the optimal policy is a threshold
rule: D* is an open interval. In order to find*, we solve a stochastic differential equation and use
the smooth-pasting principle (Oksendal 2003, p. 285+ (x) /dxis continuous.
Proposition 6. For g > 0, the optimal continuation set which maximizes the obyectunction in
Eq. (19) isD* = (&g, &), where—o < &g < X < & < oo; it is optimal to exit wherx < &g, invest
whenx > &, and continue operations otherwise.
Proof. In Appendix C, we prov®* = (&, &) wheree < x* < &;. By Proposition 5, it is optimal
to invest forsomevalue ofX;, so we have; < . Now we only need to provég > —oo.

Supposég = —o so thatD* = (-, &), and letx be less than mif€;,&; —b}. Then

V]_(X) :EX[/(;TD* xte_atdt-l-e_mD* h(El)]

=X/0 + p/a® — EX[e” "] (x/a + p/a® — h(§))) — EX[tp-e """ Jp/a.

Using the same argument used in the proof (ii) of Propos8idhis easy to verify thaE*[e~ 9" ] =
expyp(X—&)] andEX[tp-e~ 910" ] = —9qype®*—8)(x— &) for x < &. Thus, for sufficiently large
values of|x| whenx < §;, V1(x) < 0, contradicting the assumptigg = —oo. [ |

If the profit rate is<™, then there is positive probability that the profit rate \itrease to a value
bigger thanx™ in the immediate future. Hence, the expected return frontimgpis positive, so
Vi(x") > 0 andx" € D* = (§g,&;). By Proposition 6 , the firm’s optimal policy is to stop wheeev
X ¢ (§g,&) and receive the rewatu(X;). Notice thatv, (& +b) —k > 0 andV, (§g +b) —k < 0
becausér < x" < . Therefore, the firm’s optimal action at the stopping timae depends on
which end of the interval€g, &) X hits first. It is optimal to exit if% hits g at timetp+, and it is
optimal to invest ifX; hits&; at timetp-.

We are now ready to construct the optimal return functiontiedequations for the thresholds.
Becausé* is a bounded interval, by Appendix A, the solutif(x) satisfies the PDE

(Ot + Mdx + %cﬁaﬁ) [V (x)] = —xe " forallxe D* (20)
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andVi(x) = h(x) for x¢Z D*. Given the seb*, there is a unique solution to the PDE and the boundary
conditions or{¢g, & }. In addition, by Theorem A of Appendix A/i(-) must satisfy the smooth-
pasting condition®yVi(x) = dxh(X) on the boundary{&g,& }. The solution to the PDE and the
boundary conditions is

Vi(X) (21)

B X/(X +u/a2+aleVpX+azey”X, forx e D* = (EE?EI)
h(x) otherwise

whereyp andy;, are defined in Eq. (8). The unknown parametaisay, &g, and§, are determined
by the boundary conditiong (x) = h(x) and the smooth-pasting conditio®d/; (x) = dxh(x) on the
boundary{¢g, &, } of D*. See Egs. (41) to (44) in Appendix D for details.

5.3 Comparative Statics

In this section, we effect a comparative statics analysi; 6f), &g, and§,. We first examine the
comparative statics of; () with respect tqrando.

Proposition 7: For allx € R, V41(X) is non-decreasing ipando. In particularVi(X) is strictly

increasing inufor x > &g.

Proof. To begin, note that(-) is convex and non-decreasing becay§¢-) is convex and
non-decreasing. Also note that ) is non-decreasing in bothando becausé&/(-) is

non-decreasing ip ando as shown at the end of Sec. 4.

To show tha¥/(+) is non-decreasing ip, we employ the argument used in Eq. (13). Vgix; W)
andh(x; 1) denote the dependence\af(x) andh(x) on the initial (pre-investment) drift. Then for
anyB > 0 andx > &g,

T
VixH) = EX| /0 Xe *'dt+e *Th(Xr,; W]
< EX[/OTH(Xt +Bt)e*“tdtJre*“T“h(XTquBTH; U+ B)] < Vi(x;u+PB)

whereT,, is the optimal stopping time which maximiz&p (x) when the drift isy. In establishing
the strict inequality, we used the fact tigt> 0 for x > &g, h(x; 1) is non-decreasing inandy, and
Ty is suboptimal when the drift ig+ (3.
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Similarly, defineVi(x; 62) andh(x;02) asVi(x) andh(x) with volatility ¢ and letB; denote a
one-dimensional standard Brownian motion which is indeleenofB;. Let T denote the optimal
stopping time which maximizeRp(x) when the volatility iso. Becausél,;. is a stopping time for

the proces¥; = X+ Ht+ 0By, it is independent oB; so thatEX[fOT02 Bie “dt] = 0. Then

To
Vi (x;02) :EX[/ Xie Ot dt + e 9To2h (X1 ,;0?)]
0 O
T _
:EX[/ a2 (Xt i OlB[>e_atdt+ e—(XTaz h(XT 2;0-2>]
0 (o)
T _ _
SEX[/ ” (% +01B)e %dt + e Tozh(Xy , +01B;0%)]
0 (e}

T _ _
gEX[/O (% +01By)e St + e o2 h(Xr_, + 01B; 0% + 07)]

<Vi(x;0%2402),

where the first inequality follows from Jensen’s inequatityh(Xr , +01B;0%)] > EX[h(Xr; a?)],
the second inequality follows frorn(-;62) non-decreasing iw?, and the final inequality follows
from the suboptimality ofl,- when the volatility iso? + of. [ |
The comparative statics @t follows easily from Proposition 7.
Corollary 8: The exit thresholdg satisfiesd e < 0 andd 2&e < 0.
Proof. Noting thatég = inf{x: V1(x) > 0}, this result follows from the fact thati(-) is strictly
increasing inufor x > &g and non-decreasing [ |
In contrast, the comparative statics&fis considerably more complicated. Becawséx) >
Vo (x+b) —kifand only ifx < &, & = sup{x: V1(x) — [V (x+b) —k] > 0}. Hence, the dependence
of bothVy () andV; (-) onpando determine the comparative staticséof In order to examine the
comparative statics ¢, we need to study the equations for b§thand¢,. Equations (45) and (46)
of Appendix D can be rewritten as

fe—8&p= e—Vp(Eu—EE)[_g+ ()\—1 _erl)e)\(EH-b—El)]
= e_yn(zl_EE) [_g+ (yal _er].) + (erl _yal)é\(zﬁ—b—zl)] 7

whereA is given by (15). Note that a closed-form expressiorgfandg can not be obtained from
the above equations.
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Using the closed-form expression &y, it was straightforward to effect a complete comparative
statics analysis ofp. Lack of a closed-form expression impairs our ability taeeffa comparative
statics analysis of;. However, we can obtain useful insights by examining thdilegorder terms
of & in power series expansions @fvhenb is close toak — d/a (g is small) and wheib is large
(g is large). We do not considérlarge because we restrict our discussions to the integestine
ut <0, i.e., the profit stream is in decline even after investment

Using the expansions given in Propositions D1 and D2 of AgpeD, we obtain the limiting
behavior of§; andée. Asg— 0, we findég — o and& — o; this echoes the intuition that it
is almost never optimal to invest whens close to zero. In the other limit whebe— oo, we find
&g — —o and§ — g — 0; this occurs because it is optimal to invest whendwves sufficiently

large.

Proposition 9: For sufficiently small values df, (i) 052&1 > 0 anddg2&e < 0; (i) 9,& < O.
Proof. Take the partial derivatives of Egs. (47) and (48) with ez$pop ando? and use Egs. (9)
and (10) to obtain the statements (i) and (ii). [ |

Proposition 10 For sufficiently largeb, (i) 042 < 0 andd &g < O; (i) du& < 0.

Proof. (i) From the definition of and Eq. (50), we have (a functidrix) such thatf (x) — O as
X — oo is said to beo(1))

02k =~V 20g2¥n + 0520+ 0(1) = —2(€ — 1) ]A20,2A +0(1),

wherez= —A(8+ak+y;t —A~1) > 0,0 s defined by Eq. (52), andj,20 is given by Eq. (55).
Note thatz and6 are independent df so that they are not affected when we take the llmit co.
Becaus® A > 0 from Eq. (15), we have &g < O for sufficiently largeb. From Eq. (51), we
haved (& — &) — 0 asb — o so that

0528 = 0528 + 02(8) —&g) = —2(€8 — 1) " ]A 2021 +0(1) .
Thus,0,2¢; < 0 for sufficiently largeb.

(if) By Corollary 8,0,&e < 0; however, it is instructive to show, from Eq. (51) and (56),

0u€E = 0,80+ 0u(Ee —&o) = —a 1 —z(&— 1) "I\ Z9 A+ 0(1).

21



Invest or Exit? Dharma KwonUCLA

From Eq. (51), we havé,(§ —&g) — 0 asb — o, so
0u&l = 0,8 +0u(& — &) = —a 1 —z(& - 1) A 29\ +0(1).

From the definition ol in Eq. (15), itis easy to verify thata~* — z(¢ — 1)~ 1A 29\, < 0 for any
z> 0. Thus,0,¢ < 0 for sufficiently largeb. [ |
Wheng is small,0,2&e < 0 andd 2§ > O: as the uncertainty increases, it is optimal to wait
longer to take advantage of the upturn potential beforentplan irreversible action. This is similar
to the numerical result obtained by Dixit (1989): the entyi() threshold increases (decreases) in
the volatility. However, whemy is large, Proposition 10 (i) asserts thigtée < 0 andd 2§ < 0.
Notice that the resuld2&; < O stands in contrast to the conventional intuition inherftem real
options theory. This counterintuitive result obtains hesgathe return from investmei,” (x+ b) —
k, depends om. It is worthy of note that the return from investment has dej@nce oro only

because exit is possible after investment.

6 Conclusions

Our analysis of investment under deteriorating conditimnsongruent with empirical reality as
exemplified by the hard disk drive industry and many otherotdscent technologies: it can be
optimal to invest even in the face of a declining profit stre@md eventual displacement from the
market. On the other hand, it can be optimal to remain in theketaeven if the current profit
rate is negative but above a threshold; it is optimal to exiy evhen the profit rate has deteriorated
sufficiently. In particular, we obtain the closed-form dau for the post-investment threshold using
stochastic calculus.

We also effect a comparative statics analysis of the optihnatholds with respect to the volatil-
ity. As explained by Dixit (1992) and illustrated by McDodand Siegel (1986) and Dixit (1989),
the intuition inherited from real options theory suggestt tit is optimal to delay an irreversible
action longer as the degree of uncertainty increases. |bakie model of Sec. 4, for instance, the
exit threshold¢y always decreases in the volatility Similarly, in the model of Sec. 5, the exit
thresholg decreases io. The same intuition suggests tlgatincreases iw. Indeedg, increases
in o for sufficiently smallg. However, we find tha€, decreases iw for sufficiently largeg: if
the boost in the profit rate is sufficiently large, then it igimal to invest earlier as the uncertainty
about the future profit stream increases. This countetimturesult is due to the firm’s eventual
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exit, a salient feature of our model. The firm can take adwgent the volatility after investment
if post-investment exit is possible, so an increase in ildjainduces an increase in the expected
return from investment and an increaséjrfor sufficiently largeg.
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Appendix A: Return Function for Bounded Continuation Sets

In this section, we present two preliminaries to the prodPadpositions 1 and 6. First, we provide a method

of constructing the discounted expected retegnfor the continuation sdd = (x1,X2)
T
Ro(X) = E°( [ & 904 dt + & (X, ) @2)
0

wheretp = inf{t > 0: X ¢ D} is the time of the first exit fronD andX; = Xp + ut+ oB;. Hereh(:) is the
lump sum payoff upon exit fror®. Second, we prove that provided tlizitis a bounded interval, the optimal
return function has to satisfy the smooth-pasting condliiBy- (x) /dx= dh(x) /dxfor x € {x1,X.} in addition
to the boundary conditionBp-(x) = h(x) forx € {x1,x}. These results will be used to construct the optimal
return functions given by Egs. (5) and (21).
The infinitesimal generatof (Oksendal 2003, p. 121) is defined by
E[f(t+U, X)X =X — f(t,X)

LF(t,x) = ILleS . . (23)

The generatolL is well-defined for any twice continuously differentiablenttion f(-). Because{X} is a
Brownian motion with driftu and volatility o, the infinitesimal generatof of the processt, X;) is given by
L=—FP-+50"7. (24)

From the uniqueness theorems for Dirichlet-Poisson problen Oksendal (2003) pp. 176-1Rp(X) satis-
fies
Le"MRp(X)] = —d(x)e" ™ forx € (xg,%2) - (25)

The condition Eg. (25) is not necessarily guarantedaifx,) is unbounded, however. Defiféx; X1, X2) by

R(x;x1,%2) = Rp(x). From Eq. (22), the functioR(x; x1,X2) also satisfies the boundary conditions

R(x1;x1,%) = h(x1), (26)
R(x2;x1,%2) = h(x2). (27)

We can attain intuitive understanding of Eq. (25). ApplylDgnkin’s formula (Oksendal 2003, p. 125;
Harrison 1985, p. 74) to Eqg. (23), we obtain

T
EX(r. X)) = 100 +E¥ | LT(t.x)dd, (29)
0
which is reminiscent of the fundamental theorem of calcuMew we replacef (t,x) with e 'Ry (x) andt
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with Tp in EQ. (28) and use the fact thBb (X:,) = h(X¢, ), and we obtain

Rol0) = E%(— [ Lle Ro(X)ldt + & “h(%,)] 29)

0

Identifying £]e"*Rp(x)] with —¢(x)e~, Egs. (22) and (29) coincide.
We now letp(x) = x as in our model in Sec. 4 and 5. The solution to the partiakéfitial equation in

Eqg. (25) can be expressed as
R(X;X1,%2) = o~ 1(X+ p/a) + ag (Xg, X2 )€/ + ap(xq, %o )€* | (30)

wherey, andy, are defined by Eq. (8). (See also Harrison 1985, Chapter 3¢) cokfficientsa; (X1, X2)
(i =1,2) are determined by the boundary conditions in Eqgs. (26)2rngd

emelh(x) —a~*(x+ p/a)] — e [h(xp) — ot (xa + /0]

(X, %) = XY _ @lpXa Xt ’ (31)
—e%%2[h(x1) — o~ L(xq + /a)] + €7 [h(x2) — o~ (x + W/a)]
2(,x) = S HVX2 _ @VpXatynXt ' (32)

Next, we show that iD = (x3,Xp) is the optimal continuation set, th&(X) satisfies the smooth-pasting
condition: dRp- (x) /dx = dh(x) /dx for x € {x1,%2}.

Theorem A: Suppose that the optimal continuation Betvhich maximizeRp (x) defined in Eq. (22) is a
bounded intervaD = (X1, x2) and thath(-) is continuously differentiable a andx,. ThenRp(x) satisfies

the smooth-pasting conditiofRp(-) is differentiable ak; andxs.

Proof. BecausdR(X; x1,x2) is differentiable inx; andx,, the necessary conditions fof, o) to be the

optimal continuation set are the first-order conditions:
Ox, R(X;X1,%2) =0 and 0y, R(X;x1,%2) =0 for all x.

From the form ofR(X; x1,X2) in Eq. (30), the above conditions hold if and onlyjf & (x1,x2) = 0 and
Ox,8i(X1,%2) = 0 fori = 1 and 2. Taking the total derivatives of Eqs. (26) and (27hwatspect to andx,

we have

dR(X1; X1, X;
dRX X1, %) =0x,81(X1,X2) €% + Oy, 82 (X1, X2) €4 = O

dx
dR(x ; X1, X
% :aX1a1(X17X2)epr2 + aXlaz(Xl’Xz)eynXZ — 0
dR(Xq; X1, % _ .
dRx1; %1, X2) =1im 0xR(X; X1, %2) + 0x,81 (X1, X2) €/ - Ox, @2 (X1, X2 )€t = (X) e
Xm X[ %1 o
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dR(xo; X1, X . dh(x
dROGIX1, %) oo OxR(X; X1, %2) + Ox,84 (X1, X2) €™ + O, 82 (X1, X2 ) €"°? = X [x=x; -
dx XI%e dx

If we impose the necessary conditiahsa; (x1,x2) = 0 (i = 1,2 andj = 1,2) for optimality ofx; andx,, we

obtain the smooth-pasting conditiordiRy (x) /dx = dh(x) /dx for x = x; andx; . [

Appendix B: Return Function for Unbounded Continuation Sets

In this Appendix, we consider the continuation Bet= (&, ) and show that the functioRp(x), defined in

Eqg. (3), satisfies the partial differential equation
Le"Rp(x)] = —xe " forxe D, (33)

where L is defined by Eqg. (24), along with the boundary conditR#(&) = 0. The solution to this kind of
partial differential equations exists and is well-knownfigen 1985, Chapter 8).
In the following, we extend Eq. (25) to unbounded intervaistsas(g, «). We first consider a sequence

of setsD,, = (§,n) which converges t® and a sequence of functions
Tn
an(t.0) —e B | ey,
0

whereT, = 1p,. Because eadd, is bounded, we can apply Eq. (25) from Appendix A. Hengé,, -) satisfies
Ln(t,x) = —e %X for x € D, with the boundary conditiong,(t, Xr,) = 0. The challenge is to establish Eq.
(33) whenD is unbounded.

We now employ the dominated convergence theorem to show that

lim @n(t,x) — e EX| /0 P ey dy (34)

nN—oo

Because

Th Th ©
|/ e’“uxudu|§/ e’°“|Xu|du§/ e X, |du,
0 0 0

we only need to show thgf’ e~ %Y|X,|duis E*-integrable. Fron¥X; = x+ pt+ oB;,
EX[ e ixidd < EX[ e (uu+[x+|oBu)du.
0 0
From the fact thalz| < 1+ 2 and thatEX[ [’ B2du] = [5” EX[B2]du from Fubini’s theorem,

EX[/ e %(joBy|)du < EX[/ e*"“(1+0285)du]:/ e "(1+ o’EX[B?])du
0 0 0
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= / e "(1+c%udu=atl+c%a? <.
0

We note thatfy’ e @(|uul + [x|)du = |pyla—2 + [xja~t. Hence,EX[[y e @|Xyldu < (1+|x)a—t + (Ju +
02)a~2 < 0. Now we use the fact that

i Th D
lim e‘““Xudu:/ e “UX,du,
0

N—oo 0

the limit of which exists a.s. even on the $ep = «} because of the law of iterated logarithm (p.66, Oksendal

2003) which constrains the magnitudeBsfin the larget limit as follows:

. Bt B
Ilrtn_)smupm =1

Then we apply the dominated convergence theorem to arrit&®.ai34). Lastly, we can easily verify that
@(t,x) = lim,_. @, (t,x) satisfies Eq. (33) and the boundary conditigt &) = O. |

a.s. (35)

Appendix C: Proof of Proposition 6

Suppose thag = b+ 6/a — ka > 0. The goal of this Appendix is to show that the optimal cawmition set is a
bounded interval of the for®* = (&g, &) which contains<” defined in Eq. (16). In the proof of Proposition

1, the objective function is of the form
o
Ro () = ro0) +E*{ [ f(t, %)) (36)

and it is easy to see that it is optimal to continueat x when f(t,x) > 0. Hence, it is easy to identify at

least a subset of the optimal continuation set. In Promwsii, however, the objective function of Eq. (17) is
not of the form in Eq. (36). In order to cast Eq. (17) into a faimilar to Eqg. (36), we first need to transform
the objective function to one expressed without any inlegith respect to time. To do so, we introduce the

proces3M and the new lump sum payd?r(t,x, w) as follows:

W, E/OT e %Xt

h(t, X, W) =W + e Th(Xq) .

Then the objective function can be re-expressed as

Vi (x) = SUPEX[P(T, Xe, We)]
€T
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The infinitesimal generatofl of the processt, X;,W) is given by

1

20265 + e %X, , (37)

A =0y + Wox +

(see p.222, Oksendal 2003) and we have

Ah(t,x,w) = (38)

" (ko —b—8/a)e % 4 a~18e AtHANHD-E1) jf x > x* |
xe ot if x < xt

Notice thatah(t,x,w) is not defined ax = x* because the functioh(t,x,w) is not differentiable ax = x*.
Given a bounded and connected continuationGsetR which does not contair®, the functionh(t, x,w) is

twice continuously differentiable for al € G, so Dynkin’s formula (Oksendal 2003, p. 125) applies:

EX[(T6, Xeg, Wi )] = N(0,x,0) +E| /0 " Ah(t, %, Wd] (39)

We denotdJ = {x: 4h(t,x,w) > 0}, which is a bounded set becaugh(t,x,w) < 0 for sufficiently large

IX.
Claim 1: U c D*.

Proof. Supposex € U andx > x*. We choose an intervdks,x;) = H as the continuation set such that

X > X1 > X" andxe H c U. By Eq. (39),
~ ~ T ~ ~
EXR(Th, Xe, W, )] = P(0,%,0) + EX| / " ah(t, X, W)dt] > A(0,x,0) .
0

Hence x belongs to the optimal continuation $&t. Similarly, we can show that if < x™ andx € U then

x e D*. |
Claim 2: The optimal continuation s@* always contains a neighborhood»of.

Proof. Fix € > 0 and sefF = (x" —g,x" +¢€). Selectx € F and seXo = x. Definefg(-) by
TF
f.(x) = EX| / e X dt + e CFh(Xe. )] .
0

Defineo(¢) as a function of such that lina_o0(€)/e = 0. From the definition oh(-), h(x" +¢€) = Ce + 0(¢)
andh(x" —¢) = 0, whereC is the positive constant given by li;y+ 0xh(x). From Egs. (30) — (32), we obtain
fe(X) = [X/0 + /a2 +ag (X —g,x" + )P + ap(xt — &, x+ 4 €)e™*]. Expandinga (x™ — ,x" +¢) for
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i = 1,2 in powers of, we havefs(x") = [Ce/2+ 0(g)] > O for sufficiently smalk, whereC is the positive
constant defined above. Henges D*. Moreover, by continuity off¢(-), there is a neighborhood &f
within which the continuation policf = (x™ —e&,x" +¢€) gives a better return than does the non-continuation

policy F = 0. Therefore, the optimal continuation set always containsraempty neighborhood cff. W

By Claim 2, there is an open neighborholf xt such thaix™ € N ¢ D*. ThenU =U UN is a single

open interval becaus@h(t,x,w) decreases asmoves away fronx* in each direction.
Claim 3: D* does not have a subdBy which is disconnected frotd.

Proof. Suppose for the moment thathas a componeriy disconnected frort. If Dg is bounded, then we

can use Dynkin’s formula in Eq. (39) to show
~ ~ D, ~ ~
EX[(T0g, Xeo, Who, )] = PO, X, W) + EX| /0 " ah(s, X, W)dt] < (0, x,w), (40)

for anyx € Dq. Equation (40) contradicts the assumption thatDyq C D. Hence, there iso bounded

componenDy that is disconnected frotd.

Even if Dy is unbounded, the same argument still applies. Definijng: mA t1p, wheremis a positive

integer, we claim thaE*[h(Tm, Xt,,, Wy, )] — EX[N(Tpg, Xop, s Whp, )] in the limit m — . We first note the law
of iterated logarithm in Eq. (35), which implies that for any 0, there is sufficiently larg& > 0 such that
|Bt| < (1+¢€)/2tToglogt for allt > T a.s. Hence, for sufficiently large

e "'h(Xo+ ut— a(1+¢€)+/2tloglogt) < e ®h(X) < e **h(Xo+ ut+ a(1+¢€)+/2tloglogt)

a.s. Moreover, for large enoughe %*h(Xo + ut + o(1+¢€)+/2tloglogt) is an exponentially decreasing func-

tion of t for a fixedXy. Therefore, there is some finite positive constdnéuch that
e "h(Xo + pt+o(1+¢€)/2tloglogt) < M
for allt > 0. Consequently, imis sufficiently large andm < Tp,, then
&% ™sh(Xy,, ) — € (X, )| < 267“'h(Xo + ut+ 0(1+€)+/2tloglogt) < 2M

for all t, and|e"*"ah(Xy, ) — €7 %™(Xs,,)| = 0 if Tm = Tp,. Hence, we can use the bounded convergence

theorem:

lim EX[e""™ah(Xyp, ) — € """ (Xs,,)] = EX[lim (e7*Pah(Xy, ) — e “™h(Xy,))] = 0.

m—oo =00
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In the proof of Proposition 1, we already showed thatics EX[ [y™e X ds = EX[fJDd e %X.dg . There-

fore, the claimE*[h(Tm, Xx,,, W, )] — EX[h(Tp,, X5, , W, )] is proved, and Eq. (40) still holds. [

It follows from Claim 3 thatD* is an interval of the fornD* = (&g, &) where€g < xt <§,.

Appendix D: Equations for Thresholds

The coefficients; anday in Eq. (21) are determined by the boundary conditions

Vi(Eg) = &g /a + p/a? + ar €% + aete — h(Eg) =0, (41)
Vi(&1) = & /o + p/o® + g€l + ageht
=h(&) = (& +b)/a+u"/a?— (ar) " terE+b=8) k. (42)

and the smooth-pasting conditions

OxVi(Ee) = o~ ypan €05 + yhapedE = a,h(Ee) =0, (43)
OV1 (&) = a4 ypay €8 + yhape® = agh(§)) = a1 — e EHb-E] (44)

For notational convenience, we defiig = & — g andAgo = &g — &o. We eliminatea; anda, from Egs.
(41) to (44), and we obtain

N _ge*VpAIE + (}\*l_erl)e)\(AIEﬁLAEOJFbﬁLEO*El)e*VpAIE (45)

1_ ygl)e)\(mE+Aeo+b+Eo—51)e—VnA|E , (46)

= —ge "4 (v, v+ (Va

whereg is defined by Eq. (14).
In order to keep track of leading-order terms of power exjmassofg, we introduce a notation to denote
the subleading order terms: we say thiét) = o(j(x)) if f(x)/j(x) — 0 asx — 0, wheref(x) and j(x) are

functions ofx.

Proposition D1 In the smallg limit,

Ago = —gtWwC(8)(1+0(1)), (47)
A = —yptin(gH(1+0(1)), (48)

whereC(8) = [(yy — ya 1)]¥/Vn if &> 0 andC(8) = [(yp* — Yu 1) (1 — €P)Ve/¥n if §=0.
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Proof. First, we notice that iy = 0, thenAgg = g — §o = 0 andAg = & — g = «. Hence Agg — 0 and

AN — o asg—»O.

Suppose thad > 0. It is easy to show that the first term of the right-hand-¢REIS) of Eq. (45) strictly

dominates the second term so that
g lexpA(Ag +Ago+b+E—&1)] -0 asg— 0. (49)

From Eq. (49), the leading order terms in RHS of Eq. (46) argained in the first two terms=ge & 4

(Vo' —Vn1) in agreement with Eq. (48). From the fact that Jina Ao = O, the only possible leading order

term of Ae is v, tIn[g(y,* — o 1) 7. The leading-order terms dfie = y,tIn[g(y,* — vo 1)1 +0(1) is

consistent with the condition in Eq. (49) becaugg, > 1. Finally, using the leading-order term# in Eq.

(45), we obtain Eq. (47). We repeat the same proceduredwitld to complete the statements of Proposition

D1. |
Similarly, we also say that(x) = o(j(x)) if f(X)/j(X) — 0 asx — co.

Proposition D2: In the largeb limit,

DN = —0+6+0(1) (50)
DNe = —g H(Ypyn) H(L—AB—A/yn)+o0(g7Y) (1)

where8 is the unique positive solution to the equation

0= —y; 14 A LM (Orak=d/a+io—Ey) (52)

Proof. In the limitb — o, we can show thahg =&, — &g — 0 andAgp = &g — &y — —oo are the only
correct asymptotic behaviors. We notice that a necessamgitoan for the firm at time to have non-negative
return from investment is that the boosted profit bdte- b exceed< 1, so&, + b > &1 must be satisfied.
Hence, in the limib — oo, MAiE+Ae0+b+é0-81) 5 hounded by 1 because

A +Dgo+b+&—&1=¢& +b—& >0andA <0.

From RHS of Eq. (45), the leading-order termigfy is —g. We claim that the second-leading-order term
of Agg is a positive constant, independenigofSuppose that the second-order termygf grows ing, but does

so more slowly tham. Then the first and second leading-order terms of Egs. (4%)48) are—ge YeME =
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—g+ gypAie (1+0(1)) and—ge AE = —g -+ gynAe (1+0(1)) respectively, which are inconsistent because
Yp # Yn. Thus, the second leading order term/gf is a constant independent @f Hence, we can express

Agp as in Eq. (50) wher@ is a constant yet to be determined. Then Egs. (45) and (48)eam-expressed as

DAey = _g+gypAlE_|_(}\71_yal)ex(976/0(+k0(+50*51)_1_0(1)7 (53)
Deo = —g+QwliE + (Yol —¥al) + (A —yp et O-d/erkariot) 1 g(q) (54)

Thus, the leading-order term dfig converges to zero at least as fastgas because otherwis&gq has a
second leading order term growingdnLet us sef\g = C/g+0(g™!) for some constar€. From Egs. (50),
(53) and (54), we arrive & = —(YpYn) “1(1— A8 —A/yn) Where0 satisfies Eq. (52). |
We need to obtain the comparative static® af order to examine the comparative static€,0dnd&g in
the largeb limit in Sec. 5.3. From Eq. (52) and the implicit function ¢mem, the partial derivatives 6fwith

respect tas? andp are given by

g @+akty At
1_ eMO+ak+ynt-A-1)
M B+ak+y t-A?)
_ eMO+aktyrt-A-1)

(B4 ak+yyt=A"HA 102\, (55)

0520 =Y, 2052\ +

0.0 =Y, 20uyn + . (O+ak+yat—=A"HA o, (56)
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