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ABSTRACT 
 
People select one another in professional relationships for a variety of reasons.  We hypothesize that 
individuals match to their associates along a set of prominent dimensions, and in so doing, expose 
themselves to many unanticipated social influences. To examine the inter-generational transmission of 
traits in the context of scientific mentorship, we collect a novel dataset tracking the training and 
professional activities of elite young scientists.  We show that scientists-in-training choose their mentors 
along scientific dimensions, but subsequently adopt their prior advisor’s commercial orientations.  We 
draw upon qualitative evidence in the form of oral histories, as well as the implementation of inverse 
probability of treatment weights (IPTW) to estimate causal treatment effects.  Taken together, we propose 
an atypical model of structural influence whereby career paths are opened through prior professional 
relationships, but the dimensions by which we assess influence are neither deliberately formed nor the 
outcomes of standard assortative matching.  We propose that this model of structural influence may 
exemplify a common social dynamic.   
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INTRODUCTION 

 

People select one another in professional relationships for many reasons. They match 

based on characteristics such as common professional interests and ambitions, similarities in 

sociodemographic characteristics and their respective positions in status hierarchies, spatial 

proximity, and referrals from mutual acquaintances. Most professional relationships, we believe, 

form through a matching process in which individuals choose to pair on a limited number of high 

priority dimensions. Although these dimensions surely differ across dyads and settings, the 

actual ties that emerge among the immense array of connections that possibly could have 

occurred do so because of matches between individuals in a small set of especially meaningful 

characteristics. 

Despite the fact that people form relationships based on a limited number of attributes, 

each of us in our totality possesses a great variety of characteristics. This creates an interesting 

situation in its own right and, we argue, a strategic research site—we may consciously match to 

our associates along a set of prominent dimensions, but in so doing, we then expose ourselves to 

many, unanticipated social influences that arise from the many attributes of our friends and 

professional associates that we never considered when we chose to associate. Moreover, these 

attributes are often orthogonal to the characteristics that first gave rise to the relationship. In 

hypothetical terms, when two people form a bond because they share a small set of attributes X, 

it may be that some set of additional characteristics Z, which was never considered when a 

choice was made to develop the relationship, prove to be of consequence in the social 

transmission of attitudes and behaviors. 
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This is in fact exactly what we find in an analysis of professional choices in a context of 

considerable sociological interest. We examine the underpinning and consequences of matching 

between postdoctoral candidates and their faculty advisors for Pew Searle scholars, a prominent 

group of academic life scientists. Exploiting an extensive quantitative database and a fascinating 

archive of oral histories, we find that two factors dominate in the formation of matches between 

post-docs and their advisors: geographic location driven by personal constraints, and overlapping 

scientific interests. We find a high degree of consensus between coding of Pew Searle’s scholars’ 

recounting of the rationales for their choices of postdoctoral opportunities and coefficient 

estimates from a dyad-level matching model between post-doc candidates and advisors.  

In a second-stage analysis, we then show that whether or not the postdoctoral advisor had 

engaged in patenting during or before the time that a candidate arrives in his/her lab has a strong, 

long-term effect on whether the advisee subsequently becomes a patenting scientist. By 

estimating this effect in a two-stage framework and by relying on the qualitative evidence in the 

oral histories, we are able to show that postdoctoral candidates do not consider the advisors’ 

patenting behavior when establishing the match. Thus, insofar as an advisor’s values or actions 

transmit to his or her mentees, this diffusion of behavior is a pure social influence effect: it is 

causal, rather than being driven by a commonality in interests that underlies the matching of 

candidates to advisors.  

Our work is at the interstices of three literatures in sociology. First, the substance of our 

findings contributes to a growing body of work on the conditions under which academic 

scientists choose to pursue the commercial potential of their scientific discoveries (Etzkowitz; 

Owen-Smith and Powell; Evans; Stuart and Ding). As these authors have observed, the decision 

to patent scientific findings and advise or even start for-profit companies is influenced by factors 
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as diverse as scientists’ perceptions of scientific norms, to peer and employer influences, to the 

reach of their social networks across the now-porous boundary between academic and 

commercial science. To this work we contribute empirical findings showing the imprints of 

graduate school and postdoctoral advisers on the later-career choices of the students that travel 

through their laboratories. Second, our project is inspired by the burgeoning literature on career 

sequences (abbott; blair loy; others). Distilled, our findings suggest that the mentors one 

encounters early in a career have consequences not only along the anticipated dimensions that 

serve as the basis for mentorship dyads, but sometimes they cause unplanned detours in career 

trajectories. This is a structural influence of an atypical sort; it is structural because scientist-in-

training career paths are opened by the professional relationships they form, but on the 

dimension on which we assess influence, these matches are neither deliberately formed nor are 

they the outcomes of standard assortative matching processes we so commonly observe. Of 

course, our findings too that in the specific case we study, relationships formed for one reason 

have long-term consequence for an unanticipated, second event. There is no doubt in our minds 

that this is a common dynamic. 

Third, we present a novel methodological approach for empirically establishing credible 

evidence of a social network effect. A growing chorus of authors have critiqued many studies in 

the social networks literature because of its inattention to the challenges of empirically 

establishing causal network effects (see, e.g., Meow, Reagans and Zuckerman, Sorenson and 

Stuart), which stem from the fact that actors’ positions in social networks so rarely are 

exogenous to the outcomes that interest researchers. If we have any reason to believe that actors 

are deliberate in seeking professional relationships and that they have at least some discretion in 

the matches they form, then underlying individual differences—in intelligence, charisma, 
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strategic orientation, perhaps even physical attractiveness—will influence and therefore correlate 

with network positions. In outcome regressions investigating social influence processes and other 

consequences of network position, separating the true effect of a set of social ties from the 

factors that cause the ties to come to be in the first instance then becomes difficult. 

Our study offers a two-pronged approach to addressing this challenge. First, we rely on 

Pew Searle scholars’ oral histories to identity the bases for the choices they made in matching 

with specific graduate school and post-doctoral advisers.  These data convincingly show that 

matches are independent of the adviser’s views on commercializing academic science. This fact 

on its own goes a long way to addressing the problem of the endogeneity of network positions 

and, indeed, reliance on qualitative and survey data to establish the exogeneity of matches 

relative to a focal dependent variable may offer a quite general strategy for estimating valid 

network effects. Second, we have constructed a dyad-level regression model that predicts the 

formation of matches between candidates and advisers, which in turn enables us to employ a 

modification of inverse probability of treatment weighting (IPTW), a relatively recent approach 

developed by biostatisticians to estimate causal treatment effects. This approach amounts to 

estimating the effect of a postdoctoral adviser’s influence on a candidate in a regression in which 

observations are inversely weighted by the probability that each observed post-doc-mentor dyad 

was formed. Subject to satisfying a few (untestable) assumptions of IPTW estimators, this 

procedure will recover a causal social influence effect.  

Within sociology, debate marches on between structural and individual approaches to the 

study of careers. On one hand, individuals clearly are not passive actors in the unfurling of their 

careers; we all recognize, especially within professional labor markets, that individuals actively 

pursue career strategies, albeit with varying levels of energy and degrees of success. People are 
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not simply passive actors who regimentally respond to external forces; they are dynamic agents 

seeking to strategically shape their futures. On the other hand, the guiding hands of often-rigid 

job ladders (internal labor markets) within firms; the gender-typing of work roles and, more 

broadly, the effects of multiple ascriptive characteristics on distributing labor market 

opportunities; are but a few among many potent structural forces that mold the progression of 

individuals’ careers. 

If much of the diversity in the multiple sequences observed in empirical studies of 

professionals’ career trajectories (B-L, Ab) may be attributed to the influence of early career 

mentors, a set of questions come to the fore. What systematic factors influence the matches 

formed between mentors and trainees? At one extreme, are these pairings chance occurrences? 

At the other, are they predestined to follow well-trodden pathways determined by class 

structures, status processes, ascriptive characteristics, or some other dimension? Or, are they 

simple products of individual preferences?In any particular research context, the analyst must 

develop a rich understanding of this matching process before it because possible to attribute any 

causal role to mentors in the career progression of those whom they influence.  

We explore questions such as these in context of long-standing sociological interest: 

scientific careers. Using extensive qualitative and quantitative data, we explore the formation of 

pairings between an elite group of scientists-in-training with their post doctoral advisors. Within 

the literature on scientific careers, it is widely understood that postdoc advisors are critical 

influences at the formative career stage. We then examine the long-term consequences of these 

matches for a professional outcome of growing interest: the propensity of academic scientists to 

commercialize their discoveries. There are a few reasons for this choice. 1) recent work on the 

subject. 2) Attitudes toward this outcome are fractured within the scientific community, and the 
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formation of views likely to be influenced by scientific models exhibited during training 

Liperiods. 3) Very important – it is not one of the dimensions of grad student - post-doc 

matching. 

In the next section, we provide an overview of our empirical approach.  Section III 

describes out choice of a population-at-risk, empirical methodology, as well as variable 

construction.  Section IV presents descriptive statistics and our econometric results.  Section V 

concludes.   

 

RISK SET IDENTIFICATION, METHODOLOGY, AND DATA CONSTRUCTION 

Risk-Set identification 

 This project explores the role of prior mentorship on an individual’s subsequent decision 

to transition to entrepreneurship.  To explore transitions to entrepreneurship, it is first necessary 

to identify a set of individuals who are at risk of commercialization.  These individuals must not 

only have knowledge that is commercially relevant, but there must also remain sufficient 

variation in the individual’s decisions to adopt or defer opportunity exploitation.  To explore 

prior mentorship, an unambiguous identification of influential prior mentors is a must.  With 

these criteria in mind, we choose to focus on academic life scientists.  The life sciences have 

come to dominate academic entrepreneurship in the past several decades, suggesting that 

opportunities for commercialization abound in this sector (Mowery, Nelson, Sampat, & 

Ziedonis, 2004).  Furthermore, the training of life scientists is long, typically consisting of six-

years of pre-doctoral training as well as three or more years of post-doctoral training (Stephan & 

Levin, 2001).  These lengthy tenure terms allow ample opportunities for a mentor’s preferences 

and behaviors to be transmitted to the trainee.  Furthermore, the two-stage training of life 
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scientists (as a pre-doctoral and then post-doctoral student) presents an opportunity to 

empirically control for matching between students and mentors.   Lastly, the pedigree (or prior 

training environments) of a life scientist plays a prominent role throughout his or her career1, 

suggesting both the importance of training environments as well as easing data collection.   

 The matching process between mentors and trainees is far from random.  However, the 

choice of graduate advisors does entail elements of whimsy.  A typical junior scientist finishes 

his university degree (B.A. or B.S.) with limited laboratory experience and enters directly into a 

graduate program.  The individual has acquired basic technical skills, but has not been fully 

exposed and socialized to the scientific profession (Abbott, 1988).  This individual is not yet 

ready to be an independent scientist, a skill he hopes to acquire in graduate school.  The 

individual typically applies (and is accepted) to an array of schools and chooses a graduate 

institution based upon a limited set of factors.  These factors may likely include 1) number of 

promising mentorship options 2) personal geographic preferences (i.e. sun vs. snow) 3) prior 

relationships (family proximity, partners, etc.).  Once at a university, the typical graduate student 

spends a year in coursework while concurrently “rotating” through three different laboratories 

over the first calendar year.  Only after these rotations, is the student allowed to formally choose 

a laboratory2.  This choice of graduate advisor is largely determined by scientific research 

agenda as well as interpersonal congruity.  Students almost never choose co-graduate advisors. 

After graduating with a PhD, life scientists must undergo post-doctoral training3.  

Typically, individual scientists choose a post-doctoral research stream that builds upon their 

prior graduate research.  After post-doctoral training, scientists apply for an academic 

                                                 
1 Paula Stephan, personal communication.  
2 Forbidding graduate students to commit to a laboratory before their second-year forces students to broadly explore 
their laboratory choices.  Furthermore, this system disinclines excessive competition and gaming for popular 
laboratories with limited space.    
3 In our elite sample described below, only 2% of individuals did not have some sort of post-doctoral training. 
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appointment (or exit science).  Only after choosing a faculty appointment do life scientists start 

their “independent” research career.  Total time as both a graduate student and post-doctoral 

trainee can easily exceed a decade, encompassing many opportunities for the transfer of 

preferences from mentors to students (Merton, Reader, & Kendall, 1958).  These highly scripted 

sequences in career training: multiple stages, a prolonged process of professionalization, and 

distinct mentor/student relationships make life scientists ideal subjects to study the inter-

generational transfer of preferences.   

Within the universe of academic life scientists, we focus on the population of individuals 

who have been selected as either Pew Scholars or Searle Scholars (subsequently called PS 

Scholars).  PS Scholar awards are the most elite prizes given early in a life scientist’s 

independent career.  Unlike other prestigious accolades in the sciences (such as the Nobel Prize 

or a National Academy of Sciences nomination), PS awards are given for the anticipation of 

future research productivity.  When the awards are received, awardees have little, if any, track-

record of independent research.  Thus, the criteria for receiving the award is based upon both 

research conducted when the recipient was a student as well as future scientific promise. 

Pew Searle Scholars conduct scientific research that is relevant to the biotechnology 

industry.  Scholars explore questions in the sub-disciplines of the life sciences that have the most 

potential to inform the biotechnology industry, such as molecular and cancer biology.  The intent 

of the Pew awards is to “support young investigators of outstanding promise in the basic and 

clinical sciences relevant to the advancement of human health [italics added]4.  Furthermore, PS 

awards constitute only limited financial assistance, approximately $250k over 3-4 years5, which 

is generally insufficient to change the recipient’s scientific research trajectory.  Instead, these 

                                                 
4 Quoted from the Pew Scholars Program Description at http://www.futurehealth.ucsf.edu/biomed/scholdes.html.  
Accessed Sept. 30, 2007 
5 In the year 2007.  
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awards confer significant status to PS Scholars.  Lastly, the inception of PS Awards is fairly 

recent (1981 for Searle Awards and 1985 for Pew Awards).  Thus, our focus on PS Scholars 

lends insight into the generation of life scientists that came of age during the recombinant 

biology revolution (Henderson, Orsenigo, & Pisano, 1999).  By tracking the activities of PS 

Scholars, we may glean insights into not only the inter-generational transmission of 

entrepreneurial norms, but also into the social structure of the nascent biotechnology industry 

(Powell, Koput, & Smith-Doerr, 1996).   

 It is worth noting at this point that by exclusively focusing on the population of Pew and 

Searle Scholars, we are introducing a strong selection bias into our sample.  Although we make 

no apologies for this selection bias, the exact nature of this selection bias is worth elaboration.  

By focusing on PS Scholars, we limit our sample to the best young academic researchers in each 

given year.  PS Scholars exhibit strong promise with regard to academic scientific publications.  

As a result, these individuals lie in the far right “tail” of the scientific productivity distribution.  

For young academic entrepreneurs, novel scientific discoveries often serve as the foundations for 

new, commercial initiatives, such as patenting or company founding (Azoulay, Ding, & Stuart, 

2007).  Thus, we are selecting for a sample that has the potential to impact the pharmaceutical 

and biotechnology industries.  However, by focusing solely on PS Scholars, we are in no way 

selecting for “commercialists” or those scientists with entrepreneurial proclivities.  On the other 

hand, we may actually be selecting against pure commercialists as those individuals may have 

chosen to exit and immediately pursue a career in the private sector instead of starting an 

academic laboratory.  By focusing on the population of PS Scholars, we select for those 

individuals who have not only self-selected to be academics, but also have the potential to 
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become entrepreneurs.  It is this transition from academic to academic entrepreneur that we hope 

to assess.   

Both Pew and Searle Scholars are distributed across a broad range of US research 

institutions.  In the year 2007, the Pew Foundation solicited a single nominee from each of 148 

United States research institutions.  Twenty Pew Scholars were ultimately selected from this 

cohort of elite individuals.  For year 2007 Searle Scholars, 182 individuals who were recently 

appointed assistant professors, were nominated by 120 universities and research institutions.  

Fifteen Searle Scholars were ultimately selected.  For the past two decades, there have been 

approximately 35 PS Scholars in each year.  We have identified the names of all Pew or Searle 

Scholars from the inception of the awards through the year 2000.  For each and every PS Scholar 

from the year 1981-2000, we have either received CVs or constructed CV equivalents from both 

public and private data sources.  In all, we have collected data on all 642 PS Awards through the 

year 2000.  From this population of Scholars, we dropped a number of individuals whom were 

peripheral to the core disciplines relevant to the biotechnology industry.  These disciplines 

included population and field biologists, chemists, materials scientists, and clinical 

psychologists.  Furthermore, one Scholar was dropped due to a precipitous retirement and 

another succumbed to cancer in his mid-30s, within two years of receiving his award.  In all, 583 

PS Scholars (90.2% of our original risk-set) were retained for analysis.   

The median PS Scholar received his award in the year 1991.  This prototypical individual 

has a PhD in biology and did both graduate and post-graduate training.  He began his doctoral 

studies in the early 1980s and received his doctorate in 1986.  Between 1986 and 1991 (when he 

started his independent career), the individual trained in one post-doctoral lab for five years.  In 

summary, we track each Scholar’s activities backwards in time prior to the PS award to identify 
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potential influences during the Scholar’s training period and also forward to identify their 

activities in the independent portion of their career.  For the most recent year 2000 PS Scholars, 

we have the ability to track 7 years of their commercial activities after entering the risk set.  For 

earlier PS Scholars, we track significantly more time at risk for academic entrepreneurship.  This 

dataset is ultimately comprised of 583 PS Scholars and 10,398 years of their independent 

research and commercial activities.   

Utilizing both the paper co-authorship record and the Proquest Dissertation database, we 

have identified all graduate and post-graduate mentors for these PS Scholars.  These 583 PS 

Scholars were trained in the laboratories of 803 unique graduate or post-graduate laboratories.  In 

all, we have identified 1,158 dyadic mentor/trainee relationships for these 583 PS Scholars6.  

Where a PS Scholar has multiple post-doctoral training environments, we only include the post-

doctoral advisor just prior to the Scholar’s tenure-track position.  Seventeen Scholars stay in the 

same laboratory for post-graduate work7 and 13 begin an independent career directly after 

graduate work.  In all, our dataset includes 535 graduate advisor/Scholar dyads and 547 post-

doctoral advisor/Scholar dyads.  Four hundred and ninety-nine Scholars have both a graduate and 

a post-doctoral advisor.   

Empirical Methodology 

Estimating the causal effect of prior mentorship on subsequent transitions to 

entrepreneurship must confront a basic selection problem: students (and mentors) choose their 

professional relationships, resulting in a two-sided match.  As a result, econometric techniques 

which assume a random exposure to “treatment”, in our case mentorship, cannot recover causal 

                                                 
6 We identify almost 100% of the mentor/trainee dyads for this population.  This does not equal twice the number of 
Scholars due to individuals who do multiple post-docs, go straight to professorship, or have MDs (and therefore only 
have one post-doc advisor). 
7 For these individuals, we count the mentor only once, as a graduate advisor.  As a result, we do not consider that 
the trainee has a post-doctoral advisor.   
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effects.  A standard econometric approach for this type of problem is instrumental variable 

estimation, which depends upon the validity of the exclusion restriction(s).  Unfortunately, the 

choice of academic mentors is not a setting that provides credible sources of exogenous variation 

across students.  For example, a desirable characteristic of a mentor such as high scientific 

productivity (or status) almost certainly correlates with an increased risk to commercialize 

scientific discoveries.  As a result, we assume that no valid instrument is available.   

   To address this difficulty, we utilize a novel mix of quantitative and qualitative analysis 

to begin to overcome the matching issue, as well as the multi-staged nature of career paths in the 

life sciences.  We use an extensive archive of oral histories to probe the causal processes 

underlying early career decisions of our subjects (i.e. choosing a graduate university and 

advisor).  After graduate training, students purposively match to a post-doctoral advisor.  We 

draw upon both qualitative and quantitative analysis to empirically observe prominent 

dimensions by which students match to particular post-doc advisors.  Importantly, neither oral 

histories nor probit models suggest that self-selection to particular post-doc advisors is along any 

(observable) dimension of commercial interests.  Thus, we propose that students are randomly 

exposed to a particular treatment regime: the commercial orientation of their chosen post-doc 

advisors.   

To estimate selection into the second, post-doctoral stage of training, we create a 

synthetic risk-set of potential post-doctoral mentors.  After identifying graduate and post-

doctoral advisors, as well as PhD graduation dates for each student, we bin each student into 

discrete cohorts based upon their graduation date.  These cohorts all made a transition from 

graduate to post-doctoral training within the same timeframe.  Thus, we consider each student at 

risk for matching to any within-cohort, observed post-doctoral advisor.  We artificially generate 
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this list of potential post-doctoral advisors, as well as a number of dyad-level (for the potential 

student/post-doctoral advisor pair) variables.  We then use a probit model to estimate the 

dimensions along which post-doctoral advisor and students self-select one another.  Importantly, 

we find no evidence for matching along commercial lines to post-doctoral advisors.  

To estimate the causal effects of post-doctoral advisor patenting on subsequent student 

commercialization, we make use of a novel empirical approach that has gained acceptance in 

both biostatistics and economics: Inverse Probability of Treatment Weighted (IPTW) estimation 

(Azoulay, Ding, & Stuart, 2006a; Robins, Hernán, & Brumback, 2000).  These estimators are 

similar in spirit to propensity-score matching techniques in that they make the (untestable) 

assumption that selection into treatment is based on observables and extend that methodology to 

time-varying treatments effects.  In particular, IPTW estimation allows one to recover average 

treatment effects even in the presence of time-varying confounders.   

 Past research in the program evaluation literature has shown that selection on observables 

perform well when 1) researchers richly (and correctly) model the probability of treatment 2) 

units are drawn from similar labor markets 3) outcomes are measured in the same way for both 

treatment and control (Dehejia & Wahba, 2002).  Our dataset construction as well as our rich 

collection of covariates goes a long towards satisfying these conditions.  With regards to 

condition 1, which is largely unmeasurable, we have supplemented our quantitative analysis with 

qualitative evidence through oral histories.  Both out qualitative and quantitative analysis are 

consistent with one another.   

We implement IPTW estimation in first predicting a student’s propensity to match to a 

given treatment regime (post-doctoral advisor).  We then weight the subsequent estimates with 

the inverse probability of the first-stage (Azoulay et al., 2006a), which places greater emphasis 
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on the treatment regimes which are less probable.  As a result, we are parsimoniously creating a 

dataset that simulates experimental program treatment.  We also supplement our analysis with 

both unweighted regression estimates as well as a Heckman selection framework.   

To estimate the effects of post-doctoral advisor commercialization on subsequent student 

commercialization, we use a discrete time-hazard model framework with yearly spells (Allison, 

1982; Cox, 1972).  As patenting is an infrequent event, we use a logistic regression function to 

link the hazard rate with time and explanatory covariates.  In practice, we estimate a logit of 

Scholar commercialization decisions, with observations after the first commercialization event 

dropped from the estimation sample.  Advisor characteristics are set as initial conditions and are 

time-invariant.   

Data Construction 

 Using CV, public, and private data sources we have compiled detailed career histories of 

both PS Scholars and their prior mentors.  We have collected measures of commercial 

orientation in the form of patenting, founding companies, serving on scientific advisory boards, 

and academic exit to industry jobs.  We have also collected both research and commercialization 

measures at the institution level.  Furthermore, our focus on life scientists allows the collection 

of large-scale bibliometric data (Azoulay, Stellman, & Zivin, 2006b).  This allows year-by-year 

observation of not only the quantity and quality of scientific output, but also an analysis of the 

nature of the work itself.  In particular, we measure the latent patentability of each individual’s 

research stream.  Lastly, bibliometric data allows us to quantify changes in research streams over 

time.   

Dependent (Commercialization) Variables 
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 To assess similarities or dissimilarities in academic entrepreneurship between PS 

Scholars and their post-doc advisors, we collected a number of commercialization measures.  For 

both Scholars and advisors, we collected all of their issued patents and generated year-by-year 

measures of patenting flows.  We assigned all co-patents between advisors and Scholars to 

advisors.  To supplement the patenting data with a separate measure for commercial interaction, 

we collected data on company foundings and Scientific Advisory Board membership.  For each 

Initial Public Offering prior to 2001 by a nascent biotechnology firm, we have collected S1 

filings from the SEC.  From these S1s, we have identified both individual founders and also 

scientific advisory boards.  This public data is supplemented by a dataset of founders and 

scientific advisors for all venture capital backed biotech firms from 2001 to present8.  Due to 

extensive faculty patenting in the life sciences, the primary focus of this paper is on Scholar 

patenting as a proxy for academic entrepreneurship.  We also present results using Scholar 

membership of Scientific Advisory Boards as an indicator of commercial proclivities.  Data on 

company foundings and individual industry exit is too thin to draw any meaningful conclusions.   

 

Control Variables 

 We have collected a number of demographic variables for PS Scholars and their prior 

advisors.  The gender of each individual was assigned through CV or public sources.  Where the 

gender of an individual’s name was ambiguous, gender was assigned through a photo where 

possible and/or a sexed reference.  In the sole case of a transsexual, the final gender was 

assigned.  All PS Scholars have either a PhD and/or an MD.  For all Scholars, we identified the 

year when they received their highest degree.   

                                                 
8 http://www.growthinkresearch.com/ 



 

 17

 We created a dataset tracking year-by-year training and employment of each PS Scholar.  

Consistent with naming PS Scholars at the inception of their career, the first academic 

appointment year almost perfectly correlates with the year of a PS award (R-squared = 0.98).  

The norms regarding academic entrepreneurship have changed dramatically from the year 1980 

through the year 2000 (Owen-Smith & Powell).  As a result, we expect strong cohort effects on 

academic entrepreneurship, which we control for through (every other) year cohort dummy 

variables in our regression models.   

We have also collected the institutional employment of each advisor and Scholar.  All 

Scholars were tenure-track professors at a research institution when they were named a PS 

Scholar early on in their academic careers9.  We control for the research intensity of each Scholar 

university with the logged flow of total NIH grant dollars received for each employing 

university10.  We control for the commercial intensity of each Scholar university with the logged 

stock of university assigned patents.   

As a control, we bin each Scholar into one of four levels of research, depending on the 

complexity of their subject material.  These dummy variables indicate if the Scholar primarily 

uses macromolecules, cells, organisms or human beings as the primary experimental subject of 

their scientific research.  Although the scientists in our risk set all investigate questions 

concerning “modern molecular biology” and thus, have at least some relevance to the 

biotechnology industry, we control for varying differences in the commercial relevance of 

scientific research using the Scholar’s journal commercialization factor score, as well as each 

scientist’s research patentability score (described below).   

                                                 
9 Tenure-track professorship is a pre-requisite for both Pew and Searle Award nomination.  
10 Deflated to year 2003 dollars.   
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We explicitly omit measures of scientific productivity as independent variables, such as a 

count of Scholar publications, as these covariates are likely to correlate with Scholar 

commercialization and will confound our results.   

  

Dyad-Selection Variables 

 To implement a selection on observables framework, it is important to richly model the 

probability of matching to particular post-doctoral advisors (treatment regimes).  As mentioned 

earlier, we collected commercialization variables for both graduate and post-doc advisors.   

To account for Scholar/post-doc advisor homophily, we generated a number of variable 

controlling for gender and birthplace.  We generated indicator variables for both Scholar and 

post-doc advisor being the same sex, as well as being both female.  We also identified the birth-

country and the undergrad institution of the Scholar.  We generated an indicator variable if the 

Scholar’s undergraduate institution and the Post-doc advisor’s research institution were in the 

same (US) State to account for a possible tendency of Scholar’s to remain near their birthplace.  

To account for sorting along ethnic lines, we generated an indicator variable if the Scholar and 

Post-doc advisor were born in the same country.  To tease out non-US homophilic tendencies, 

we generated a dummy variable if the Scholar was not born in the US and interacted this variable 

with the same-country variable above.   

We suspect that status differentials may be an important variable in matching to specific 

Post-doc advisors (Merton, 1968).  As a result, we generated quartile dummies for the difference 

in prior publication count between the Scholar’s graduate advisor and a post-doc advisor.  To 

account for matching to higher productivity post-doc advisor, we include a count of post-doc 
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advisor publications.   We also collected data for advisor membership in the US National 

Academy of Sciences11.   

Lastly, we suspect that there is strong matching between a Scholar’ prior (graduate) 

research trajectory and subsequent (post-doc) research trajectory.  To control for matching along 

scientific content, we turn to Medical Subject Heading (MeSH) article keywords12.  MeSH 

headings are expert curated keywords that comprise the National Library of Medicine’s (NLM) 

“controlled vocabulary thesaurus.”  In 2008, these ~25,000 distinct descriptors are used by the 

NLM to index all journal articles in Medline/Pubmed, the NLM’s library.  As a result, each life 

science article collected from Medline will have a discrete number of MeSH keywords 

associated with it.  Concomitant with our collection of each scientist’s publication list from 

PubMed, we have also collected MeSH keywords.   

We use the MeSH keywords in two ways.  First, we use the MeSH keywords to control 

for the underlying research patentability of each scientist’s productive output.  We collected all 

MeSH keywords from a set of highly-productive “superstar” scientists, with PS Scholars 

excluded (Azoulay, Superstar Extinction paper ref).  Superstar scientists were merged with 

patenting data and scientist-years were binned into those which had patented in the past and 

those which had not.  MeSH keywords associated with either the patenting or non-patenting 

regime were then assigned a weight proportional to their frequency of occurrence in either 

regime13.  Of note is that each MeSH keyword was assigned a research patentability for each 

year the keyword occurred, allowing for endogenous changes in patentability over time.   

                                                 
11 We also collected a number of other accolades, including Nobel prizes, Lasker awards, etc.  These prizes were 
highly correlated with NAS membership.   
12 http://www.nlm.nih.gov/mesh/ 
13 For full data construction reference, see Appendix I in Azoulay, Ding, Stuart, JIE forthcoming) 
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Our second use for MeSH keywords is to measure scientific research proximity between 

two individual scientists.  Given two scientists’ publications, we generate a count of the number 

of overlapping, unique MeSH keywords.  This number, divided by the sum of each advisor’s 

total MeSH headings constituted a symmetric measure of scientific overlap between the graduate 

and post-doctoral advisor.  We generated four dummy variables corresponding to each quartile of 

scientific overlap.  To account for both differences in research productivity and cohort effects, 

we included only advisor MeSH keywords from publications prior to the end of the PS Scholar’s 

graduate training. 

As we have detailed training histories for each PS Scholar, we are able to glean 

approximate times when the Scholar and Advisor were co-localized.  For PhD advisors, we infer 

co-localization as the six years prior to when the degree was issued.  For post-doctoral advisors, 

we infer co-localization as the time period from the award of a PhD until the PS Scholar starts as 

an assistant professor14.  If the advisor has been issued a patent PRIOR to the time when the 

Scholar departs and co-localization ends, we set an advisor patenting dummy variable to 1.  For 

advisor commercialization variables, we do not include advisor commercialization behavior 

subsequent to Scholar departure.   

Not all scientific research is equally relevant to the commercial sector.  Following (Lim, 

2004), Azoulay, Stuart and Ding compared the journal names of patenting and non-patenting 

scientists to identify the venues where commercialists prefer to publish their scientific research 

(Azoulay et al., 2007).  As a result, they empirically derived a time-varying Journal 

Commercialization Factor for each life sciences journal-year.  After collecting each Scholar’s 

                                                 
14 For Scholars with multiple post-doctoral advisors, we infer that the Scholar spent equal time training with each 
post-doctoral advisor.   
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and Advisor’s publications list from MedLine15 using Publication Harvester (Azoulay et al., 

2006b), scientific paper output was weighted by the Journal Commercialization Factor.  For both 

graduate and post-doctoral advisors, we compute the average JCF score for publications in all 

years PRIOR to the Scholar’s departure.  Thus, we are measuring the commercial relevance of 

each advisor’s research agenda only for those years that potentially influence the Scholar.  The 

advisor and Scholar’s publishing years do not overlap.   

 

 
RESULTS 

Descriptive Statistics 

 Our culled dataset is comprised of 583 Pew Searle Scholars.  These Scholars are 21% 

female, and are primarily composed of scientists who earned PhDs (See Table 1).  About six 

percent of the Scholars only have an MD.  All Scholars have a higher degree (either MD and/or a 

PhD).  The median Scholar received a PhD in 1986 and began an independent academic career in 

1990.  Only 9% of the Scholar’s work in clinical, translational research.  Consistent with the elite 

nature of the PS Awards, many Scholars are academic entrepreneurs.  Just fewer than 40% of the 

Scholars are issued a patent by year 2007.  Furthermore, 15% of the Scholars are identified as 

either a founder or a member of the Scientific Advisory Board of a biotechnology firm.  As 

expected, each Scholar’s scientific research is more similar to their Post-doctoral advisors than 

their Graduate advisors (Table 1).   

For these 583 Scholars, we have identified 535 graduate advisor/Scholar and 547 post-

doctoral advisor/Scholar dyads.  There are 448 unique graduate advisors, as well as 377 unique 

post-doctoral advisors [see Figure 2 & Figure 3 for advisor/trainee counts and prominent names].  

                                                 
15 http://www.ncbi.nlm.nih.gov/sites/entrez 
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It is interesting to note that this list of prominent graduate and post-doctoral advisors does not 

overlap. Furthermore, there is striking diversity in types of research by these prominent advisors.  

Lastly, note that this list of individuals comprises pre-eminent academic scientists, not pre-

eminent commercialists.  For example, Stanley Cohen and Herbert Boyer, credited with initiating 

the biotechnology industry and Genentech, Inc., are not even on our list of 803 unique advisors.  

At the time, Cohen and Boyer were running laboratories at Stanford and UCSF, respectively, 

placing them at risk for mentorship16.   

Both graduate and post-doctoral advisors are 6% female, a far lower percentage than 

Scholars.  One out of eight post-doctoral advisors is a Nobel laureate (Table 1, Panel C).  Nearly 

one-third are members of the Howard Hughes Medical Institute and nearly two-thirds are 

members of the US National Academy of Sciences.  The average post-doctoral advisor has 

trained 2.5 Pew Searle Scholars.  For each of these measures, graduate advisors are not as 

prestigious as post-doctoral advisors (Table 1, Panel B).  Nonetheless, these descriptive statistics 

strongly suggest that these graduate and post-doctoral advisors represent an elite cohort of 

academic scientists.  Lastly, many advisors are academic entrepreneurs.  Over 20% of graduate 

advisors and over 45% of post-doctoral advisors had been issued a patent by the time the Scholar 

finished his/her training period.   

Each Scholar’s choice of academic institution also does not appear to be random.  Most 

striking is the geographic concentration of graduate and post-doctoral institutions.  Five of the 

seven most prevalent graduate universities are located in Boston and San Francisco (Figure 4).  

Aggregated by state, more than 50% of PS Scholars who trained as graduate students in the US 

were at institutions in California or Massachusetts (see Table 2).  For post-doctoral institutions, 

                                                 
16 Note that Stan Cohen won the Nobel Prize in Medicine in 1986.  However, both this highest accolade as well as 
widespread eponymy as a patentor was insufficient for him to train a future Pew or Searle Scholar.   
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the addition of New York and Maryland (i.e. NIH) comprised over 75% of the Scholars.  For 

post-doctoral appointments, five institutions clearly comprise the universities of choice for Pew 

Searle Scholars (Figure 5).  This incredible institutional concentration of mentorship and human 

capital is consistent with the central role these two cities play in the biotechnology industry 

(Kenney, 1999).  Furthermore, we note that there is significant variation in the proportion of 

advisors at each institution who are patentors.  Unsurprisingly, there are significantly patent 

intensive universities such as MIT and Stanford.  Conversely, institutions such as the National 

Institutes of Health, and Yale are less-commercial.  It should be noted that Pew Searle Scholars 

choose to patent in very high numbers across all institutions, suggestive of changing community 

norms (Figure 6) (Etzkowitz, 1998).   

 

Qualitative Analysis 

 Our qualitative analysis is summarized in Table 3 & Table 4.  Representative quotes for 

each category are included in each table.  We bin each student’s motivations to select a particular 

graduate university (and/or graduate advisor) along personal, institutional, and advisor 

characteristics.  The vast minority, only XX%, of students considered one graduate program over 

another due to specific advisors at that institution.  In XX number of these cases, the student had 

been awarded a country-specific (i.e. Rhodes fellowship) that required the student to find a 

specific thesis advisor.  European (vs. US) doctoral students apply directly to an individual 

scientist’s laboratory, rather than to a university graduate program.  The majority of students 

(XX%) chose their graduate program due to either personal (relationship or geographic) 

preferences and/or the status of the graduate institution.  In no instance did any Scholar mention 
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future entrepreneurial activities as a factor in their choice of either graduate institution, graduate 

advisor, or post-doctoral advisor.   

On the other hand, matching to post-doctoral advisors was largely purposive.  The 

student had a more sophisticated understanding of the costs/benefits to specific mentors.  These 

decisions were most strongly influenced by the Scholar’s personal scientific trajectories 

(building upon their graduate work) and developing interests.  Furthermore, the reputation of the 

post-doctoral advisor, as well as personal (relationship or geographic) constraints on the part of 

the Scholar were prominent dimensions to select post-doctoral advisors (see Table 5 for a quote).  

With the choice of a post-doctoral advisor, scientific fit between the Scholar and post-doctoral 

advisor was clearly the most dominant advisor characteristic taken into consideration.   

 

Post-doc Advisor Selection Models 

To empirically explore the determinants of post-doc advisor selection, we generated a 

dyad-level risk-set of over 13,000 potential Scholar/post-doc advisor pairs, with 500 dyad-pairs 

realized in our dataset17.  In Table 5, we present probit models predicting Scholar matching to 

particular post-doctoral advisors.  Given our emphasis on academic entrepreneurship, we are 

interested in Scholar/post-doc advisor matching along commercial dimensions.  Our qualitative 

evidence suggests that Scholars do not take (future) commercial interests into account when 

selecting a post-doc advisor.  Furthermore, we are particularly interested in an indicator variable 

for when ONLY the graduate advisor patents (and the post-doc advisor does not).  If our 

estimates on this indicator variable are negative, this would suggest that graduate advisor 

commercial orientation is spilling over into Scholar matching preferences.   

                                                 
17 Expansion of this risk-set to include further include observed post-doctoral advisors in the years adjacent to 
Scholar graduation resulted in an expansion of the risk-set to >100k potential observations.  Using this risk-set did 
not alter our results.   
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In the spirit of parsimony, Model 1 presents estimates for Scholar/post-doc advisor 

matching along commercial lines with no other covariates besides cohort dummies.  Although 

we a marginally significant positive estimate for both advisor patenting, our pseudo-R-squared is 

very low.  As there are multiple positive correlates with patenting (such as research productivity) 

this result seems within reason.  To control for regional propinquity, we see a significant, 

positive effect for Scholars to stay in the same state as their undergrad institution (Model 2).  

This effect is largely driven by Scholars who went to undergrad university in California, 

Massachusetts, and New York, suggesting a disinclination to move between life-science clusters.  

We also see a propensity for US-born Scholars to selectively work for US-born advisors, as well 

as foreign-born Scholars to work for post-doc advisor of the same nationality (Model 3).  For 

foreign-born Scholars, this effect is largely driven by Scholars from the UK, not from East Asia.  

Lastly, we see no propensity to match along gender (Model 4).   

The largest determinant of matching between Scholars and post-doc advisors is along 

scientific lines (Model 5)18.  As the excluded scientific closeness quartile (# 4) is the quartile 

with the most scientific overlap between a Scholar’s graduate advisor and the post-doc advisor, 

we see that decreasing scientific closeness (and increasing scientific distance) dramatically 

lowers the probability of a Scholar matching to that particular post-doctoral advisor.  Although in 

Model 5 we see a significant, negative coefficient on ONLY post-doc advisor patenting, this 

result is ablated when we take account of scientific productivity and status (Model 6).  Consistent 

with the three quartiles of scientific closeness, we see a slight decrease in matching along 

research productivity dimensions.  In other words, for our elite dataset we do not observe 

graduate student from high-productivity laboratories selectively matching to other (relatively) 

high-productivity laboratories.  On the other hand, we do see a significant, decreased probability 
                                                 
18 Note the Pseudo-R-Squares.   
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of matching to a high-status National Academy of Sciences laboratory if the Scholar’s graduate 

advisor was not a National Academy of Sciences member. 

 

Discrete-Time Hazard Rate Models with Selection 

 We present discrete time hazard rate models with yearly spells in Tables 6 & 7.  We 

estimate a logit of the decision to commercialize within a given year, for all years up to and 

including the first commercialization event.  Scholars enter the risk-set when they begin their 

independent careers as professors.  Scholars exit the risk-set when they experience their first 

commercialization event.  We proxy for a Scholar’s commercial proclivities using Scholar 

patenting in Table 6 and membership on a Scientific Advisor Board in Table 7.  Characteristics 

of their prior mentors are included as initial conditions and do not vary within each scientist.  All 

hazard rate models include year dummies as well as Scholar cohort dummies.  Furthermore, we 

control for the type of science the Scholar does, as well as both graduate advisor and post-doc 

advisor’s prior commercialization score and depreciated research patentability stock during 

training.   

 Table 6 presents hazard rate models of Scholar patenting.  Model 1 includes variables 

commonly thought to be associated with academic patenting.  The female scientist dummy has a 

significant negative effect on the probability of patenting.  We estimate that female scientists will 

become a first-time patenter at 49% the odds of the male scientist.  On the other hand, scientists 

with an MD/PhD will become first-time patenters at 106% the odds of their PhD peers.  We see a 

strong positive effect for universities which are high patenters.  A one standard deviation 

increase in the logged-stock of university patents increases a Scholar’s odds of first-patenting by 
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35%.  We do not observe any effects for graduate advisor commercialization behavior on 

Scholar’s subsequent probability of patenting.   

 Contrary to graduate advisor characteristics, Model 2 shows a strongly significant, 

positive effect of post-doc advisor patenting on a Scholar’s subsequent probability of patenting.  

Scholars who have been trained in laboratories where the post-doc advisor patented increase 

their odds of patenting by 102%.  In Model 3, we show a similar effect for Scholars who have 

been training in laboratories where the post-doc advisor served on a Scientific Advisory Board.  

Post-doc advisor membership on an SAB increases the Scholar’s own odds of subsequent 

patenting by 53%, about half that of patenting.  When both SAB membership and patenting are 

taken into account, the patenting treatment effect dominates (Model 4).   

In Model 5 we implement the IPTW methodology using the fully specified probit model 

in Table 4.  Using a probit model to predict Scholar matching to specific post-doc advisors, we 

predict the probability of observing our realized Scholar/post-doc advisor dyads relative to all 

potential dyads.  The inverse of this probability is then used to weight our regressions in Table 5, 

Model 5.  In essence, we are giving proportionately greater weight to those Scholar/post-doc 

advisor matches which are less probable, thus constructing quasi-experimental matching between 

Scholars and post-doc advisors.  Implementation of the IPTW methodology increases the 

probability of Scholar patenting (Model 5).   

 Reassuringly, having a post-doc advisor who patents (Model 6) or sits on an SAB 

(Model7) has no effect on subsequent research productivity, as measured through an impact-

factor weighted count of published papers.  For these Poisson models, female scientists are 

marginally less productive than their male counterparts, suggesting that gender plays a larger role 
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in commercial outputs than research productivity.  As expected, we see no effect in research 

productivity for MD/PhDs versus PhDs or the patenting intensity of a university.   

 In Table 7 we run discrete time hazard rate models of Scholar Scientific Advisory Board 

Membership.  As Scholar SAB membership is infrequent, we observe many more right-censored 

Scholars than in our Scholar patenting panel.  In our dataset we observe only 60 events where 

Scholars are assigned membership to an SAB.  Nonetheless, we observe a significant, positive 

effect of post-doc advisor patenting on subsequent Scholar SAB membership when we account 

for selection on observables (Model 5).  Scholars who have been trained in laboratories where 

the post-doc advisor patented increase their odds of scientific advisory board membership by 

123%.  Surprisingly, we see no effect for post-doc advisor SAB membership on subsequent 

Scholar SAB membership.  Neither post-doc advisor patenting nor SAB membership has an 

effect on subsequent Scholar research productivity (not shown).   

 

DISCUSSION 

 Our results strongly suggest that prior mentors influence the subsequent entrepreneurial 

norms of their trainees.  Although preliminary, the results presented in this paper provide some 

evidence that trainees learn much more than job-specific skills from their mentors.  Although we 

commonly conceive of graduate and post-graduate training as a transmission of skills from the 

mentor to the trainee, our results suggest that a much wider range of behaviors are explicitly and 

implicitly transmitted from mentors to trainees.  In the community of life scientist trainees, 

students are not only learning mastery of scientific practice, but are also absorbing beliefs about 

“rules of engagement” with the commercial sector (Merton et al., 1958).  As the attitudes of 

academic scientists towards commercial activities vary widely, replication in behavioral norms 
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between mentors and trainees is likely to have long-term implications that range far beyond 

scientific research agendas (Owen-Smith et al., 2001).    

On the one hand, these results would suggest a particularly slow inter-generational 

turnover of beliefs, as de novo scientists are strongly imprinted with the beliefs of their 

predecessors.  Only those individuals who choose to flout communal standards, as well as their 

trainees, are likely to become academic entrepreneurs.  On the other hand, if there exists a 

number of disproportionately influential mentors who are successful at both training academic 

scientists and engaging in commercial activity (the apparent case with the biotechnology 

industry), the laboratory structure of the academic life sciences may expedite the diffusion of 

entrepreneurial norms across generations.  Trainees will flock to a select group of advisors for 

cutting edge science.  Tangentially, they will also adopt novel commercialization norms and the 

adoption of these divergent norms will be expedited.   

 Lastly, the immediate institutional environment also affects Scholar behaviors, as 

reflected in our measure of institutional patent stocks.  There are a number of possible 

explanations that may underlie this effect.  The most direct explanation is the presence or 

absence of a Technology Licensing Office.  Budding entrepreneurs who produce commercially 

relevant knowledge and are open to commercial engagement may find themselves stymied 

through the lack of legal resources (Colyvas et al., 2002).  The effects of a university TLO may 

also be indirect.  As more individuals at an institution decide to patent, peer effects may 

strengthen over time.   

It is striking that universities exhibit differing, but stable patent intensities over time.  It is 

not just the elite, life sciences universities which are producing a large number of patents.  In the 

past, a number of elite universities have resisted the trend in the life sciences towards 
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engagement of the commercial sector.  This resistance is not just restricted to universities outside 

of the biotech hubs of Boston and San Francisco, but universities within these cities also exhibit 

significant variation (Zucker, Darby, & Brewer, 1998).  Exploring the causal mechanisms 

underlying the institutional norms towards commercialization may be a promising avenue of 

research.   

This dataset may be useful for exploring questions complementary to the inter-

generational transmission of entrepreneurial norms.  In particular, we have coded the 

employment institution of all our Scholars, including any changes in institutional employment.  

An interesting, remaining question is the effect of institutional norms relative to prior mentorship 

norms.  For those individuals who did not train under academic entrepreneurs, what are the 

effects of an institution with strong pro-entrepreneurial norms?  Are institution and prior 

mentorship norms substitutes or complements?   

This study comes with many caveats.  We begin to get at causality through non-

contemporaneous correlations between prior mentors and subsequent trainee behavior.  

However, matching between mentors and trainees remains a choice.  Although we have no silver 

bullet to address this issue, there are many reasons to suggest that it is not a substantive concern.  

First, although there is clearly matching between graduate mentors and trainees, scholars in this 

study appear to have chosen graduate advisors based upon their scientific, not their commercial 

credentials.  The absence of Stan Cohen and Herb Boyer are striking examples of this.  Second, 

the institutional structure of US graduate education in the life sciences discourages rapid 

commitment between graduate advisors and trainees.  Subsequent to co-location at a graduate 

institution, this partnering is only allowed after a year.  Lastly, we find no empirical evidence in 
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our dyad-level models for matching along commercial dimensions.  However, these issues 

require further probing19.    

Furthermore, our dataset currently does not allow us to analyze whether or not trainees 

explicitly learn how to engage the private sector.  In this study, we have not explored measures 

for the commercial success of academic entrepreneurship.  Are there antecedents to not only 

patenting, but also to filing for patents that are subsequently highly-cited?  Are the trainees of 

more successful entrepreneurs more successful themselves?  To date, we have only explored 

relatively blunt proxies for commercialization.   

Taken together, a novel dataset, a number of new measures, and a careful empirical 

specification should allow the exploration of norms transmission across successive generations 

of academic entrepreneurs.  By focusing on mentor/trainee relationships, this paper has drawn 

attention to a key unexplored mediator of entrepreneurship.  Furthermore, incorporating 

mentorship, as well as workplace and institutional factors, may lead to a more complete 

understanding of both the dynamics of how novel entrepreneurial practices diffuse across 

industries as well as the origins of entrepreneurs themselves.   

 

                                                 
19 A useful resource we are currently exploring is the oral history archive of Pew Scholars, which attempt to 
qualitatively tease out influential episodes in careers of these life scientists.  These 139 oral histories are listed at the 
following UCLA website: http://unitproj.library.ucla.edu/biomed/histmed/ohistory-pew-n.cfm 
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Figure 2a: Number of Trainees per Graduate Advisor 

 
 
 
Figure 2b: Names of advisors with 4 or 5 trainees 
# of Scholars 
Trained 

Name University Type of Research 

4 Eric H. Davidson Caltech Developmental Biology of Sea Urchins 
4 Robert L. Baldwin Stanford Biochemistry of Protein Folding 
4 Gunter Blobel Rockefeller Cell Biology of Yeast Nuclear Transport 
5 David Botstein MIT Genetics of Baker’s Yeast 
5 Philip A. Sharp MIT Biochemistry of RNA Splicing 
5 Jack W. Szostak Harvard Genetics of Yeast Chromosomes 
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Figure 3a: Number of Trainees per Post-doc Advisor 

 
 
(correct figure, N = 547) 
 
Figure 3b: Names of post-doctoral advisors with 5 or more trainees 
# of Scholars 
Trained 

Name University Type of Research 

5 Ronald W. Davis Stanford Molecular Immunology 
5 Harold E. Varmus NIH Viruses and Cancer 
6 Marc W. 

Kirschner 
UCSF/Harvard Developmental Cell Biology 

6 Stanley Falkow Stanford Genetics & Microbial Pathogenesis 
6 Robert Tjian UCBerkeley Biochemistry of Transcription 
6 H. Robert Horvitz MIT Cell Biology of C. elegans 
6 Randy Schekman UCBerkeley Vesicle Transport in Yeast 
8 Thomas R. Cech UColBoulder Biochemistry of Transcription and Splicing 
8 Gerald M. Rubin UCBerkeley Genetics of the Fruitfly 
8 Thomas P. 

Maniatis 
Harvard Biochemistry of Gene Regulation 

9 Richard Axel Columbia Genetics of Olfaction 
11 David Baltimore MIT Molecular Virology 
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Table 1:  Descriptive Statistics 
 
Panel A: PewSearle Scholar Characteristics 
Variables Observations Mean Std. Dev Min Max 
Becomes a 
Patentor 

583 .3979417 .4898936 0 1 

Is Identified on an 
S1 

583 .1475129 .354921 0 1 

Commercial 
Relevance Score 

583 .0528406 .0131579 .0182131 .1144429 

Is Female 583 .212693 .4095637 0 1 
Highest Degree 
Year 

583 1985.724 5.069371 1973 1998 

Is an MD 583 .0651801 .2470554 0 1 
Is a PhD 583 .8027444 .3982686 0 1 
Is an MD/PhD 583 .1320755 .3388635 0 1 
Year of 1st 
Academic Appt. 

583 1990.165 5.252424 1977 2000 

Primarily Studies 
Macromolecules 

583 .3619211 .4809688 0 1 

Primarily Studies 
Cells 

583 .2281304 .4199874 0 1 

Primarily Studies 
Organisms 

583 .3207547 .4671675 0 1 

Primarily Studies 
Human Beings 

583 .0891938 .2852681 0 1 

Similarity of 
Research to 
Graduate Advisor 

535 .321559 .1894119 0 .816 

Similarity of 
Research to Post-
doc Advisor 

545 .5139115 .1904411 0 .8695652 
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Panel B: Graduate Advisor Characteristics 
Variables Observations Mean Std. Dev Min Max 
Is Female 535 .0635514 .2441804 0 1
Was a Patentor 535 .2056075 .4045231 0 1
Was Identified on 
an S1 

535 .1401869 .3475058 0 1

Prior Commercial 
Relevance Score 

532 .055933 .0164912 .0157825 .1726375

Number of 
Publications 

583 81.28302 76.42176 0 498

Is an HHMI 
Investigator 

535 .128972 .3354826 0 1

Is a Nobel 
Laureate 

535 .0691589 .2539616 0 1

Is a Nat’l Acad of 
Sciences Member 

535 .4186916 .4938064 0 1

Number of 
PewSearle 
Trainees 

535 1.482243 .943717 1 5
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Panel C: Post‐Doctoral Advisor Characteristics 
Variables Observations Mean Std. Dev Min Max
Is Female 547 .0585009 .234903 0 1
Was a Patentor 547 .4614445 .4957312 0 1
Was Identified on an 
S1 

547 .3199269 .4668749 0 1

Prior Commercial 
Relevance Score 

545 .0536468 .0108415 .0182911 .1039855

Number of 
Publications 

583 106.5557 85.31093 0 514

Is an HHMI 
Investigator 

547 .3144424 .4647184 0 1

Is a Nobel Laureate 547 .1261426 .3323139 0 1
Is a Nat’l Acad of 
Sciences Member 

547 .5886654 .4925261 0 1

Number of 
PewSearle Trainees 

547 2.517367 2.40062 1 11

 
Panel D: Institution Patenting Characteristics 
Variables Observations Mean Std. Dev Min Max
Scholar Institution 
Patenting Intensity 

539 1.251889 1.838325 0 13.05524

Graduate  Advisor 
Institution Patenting 
Intensity 

430 1.995241 2.934114 0 16.83056

Post-doc Advisor 
Institution Patenting 
Intensity 

404 2.048043 2.726643 0 21.11699
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Table2a: Geographic Concentration of Graduate Advisors (>=10 Scholars Trained) 
US State # of Scholars 

Trained 
% of US Trained 
Scholars 

Cumulative % of US 
Trained Scholars 

California 120 27.84 27.84 
Massachusetts 103 23.90 51.74 
New York 51 11.83 63.57 
Connecticut 17 3.92 67.52 
Missouri 15 3.48 71.00 
Wisconsin 14 3.25 74.25 
Indiana 13 3.02 77.26 
Maryland 13 3.02 80.28 
Texas 13 3.02 83.29 
North Carolina 12 2.78 86.08 
New Jersey 10 2.32 88.4 
Note: In total, 431 Scholars receive PhDs from US institutions. 
 
Table2b: Geographic Concentration of Post‐doctoral Advisors (>= 10 Scholars Trained) 
US State # of Scholars 

Trained 
% of US Trained 
Scholars 

Cumulative % of US 
Trained Scholars 

California 137 32.39 32.39 
Massachusetts 117 27.66 60.05 
New York 49 11.58 71.63 
Maryland 26 6.15 77.78 
Connecticut 21 4.96 82.74 
Indiana 13 3.07 85.92 
Texas 13 3.07 88.89 
Note: In total, 423 Scholars did post-docs in US Institutions 
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Table 3:  
Motivations for Choosing Graduate Institution/Advisor 
 
Motivations underlying choice % of Scholars 
Personal Reasons TBD 

• -Relationship TBD 
• -Preference TBD 

Institution Features TBD 
• -Program Feature TBD 
• -Status TBD 

Specific Advisor TBD 
• -Prior direct experience TBD 
• -Reputation TBD 
• -Fellowship required TBD 

 
Quotes: 
(Personal Reasons; Relationship + Preference) 

“I applied to three programs: Cornell, Wisconsin, and Berkeley.  And Davis.  I 
was accepted to all of them, and Berkeley seemed easy.  It was quite easy to do.  I 
basically had to drive seventy miles and I was there.  And it had enough allure as the 
name that it was fine.  In restrospect, certainly it was, again fairly poorly thought out… I 
think it was much more of an issue of convenience.  I had a girlfriend at the time.  How 
did that work?  She was at Davis, and that affected things.”  -pg 89-90.  

 
(Institutional Features; Status) 

 “By the time I decided that [to apply to PhD programs], the application deadlines 
had passed.  I could have gone to University of Minnesota…I felt that it would be in my 
interest to get the pedigree—to try to go to the best place I could.  I decided to wait a 
year…” –pg21 
 “Then I went to MIT…  I also looked at faculty at the universities throughout the 
country—where they came from.  Almost invariably, it was either Berkeley or MIT; that 
seemed like a good sign to me.” –pg22   
 

(Specific Advisor: Prior direct experience) 
 “What happened was I was given a fellowship to come to the United States to 
work in a research lab in Michigan.  This was John Pringle’s lab.  It was an amazing 
experience for me.  I thought I was coming to the US to just basically see the US and take 
a vacation and then go back to Ireland and sort of piddle on.  But when I came over I just 
totally fell in love with science… So by the end of the summer it was perfectly obvious to 
me that this was what I should be doing for a career.  I talked with John Pringle… about 
the possibility of going back for graduate school to his lab, and he said “Yeah, sure”.  –
pg-32 
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Table 4:  
Reasons for Choosing Post-doc Institution/Advisor 
 
Quotes: 
Geographical Constraint 1 (Jean Greenberg): 
 “… I think after about five years in graduate school, I had done quite a lot.  I probably 
could have graduated at the end of five years, but I had not, of course, done any planning.  This 
is the usual.  Nobody ever sat me down and said, gee, you’ve got to plan for the next step… 
…Adam [Driks] [her husband, who is a biology grad student at Brandeis] and I sat down and we 
discussed it.  We thought, well, probably we should plan to do is either stay in the Boston area or 
move to California, the idea being the density of research is high in both of those locations and 
we could probably both find labs that we would both be happy with.  So we had this kind of 
geographical constraint. 
 Then the ideas was, What am I going to do? [laughs]… …At that period, I think I spend 
about three or four months reading.  I just read everything I could get a hold of, all different 
articles, all different journals.  Went to a lot of seminars and tried to think about what area might 
be interesting to pursue…”  [pg. 43-44] 
 “In any case, I wrote to Ausubel; he never wrote back to me.  I called him up; he said, 
“There’s no room.”  I sid, “Well, I’m just across the river, what harm would it do?  Then at least 
if you don’t have an opening, you could give me some advice about what to do.’  I guess I 
conned him into letting me come to his lab, because once I got the interview, he basically said, 
“Well, if you can get some money to come here, you can come and work with me…”  [pg 45-46] 
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Table 5: Probit Regressions for Selection Model 
 
 (1) (2) (3) (4) (5) (6) 
grad and pdoc advisors 
both patent 

0.145 0.154 0.144 0.145 -0.008 0.120 
(0.080)+ (0.080)+ (0.079)+ (0.080)+ (0.087) (0.086) 

ONLY graduate advisor 
patents 

-0.067 -0.063 -0.065 -0.064 -0.142 -0.075 
(0.072) (0.072) (0.072) (0.072) (0.075)+ (0.075) 

ONLY post-doc advisor 
patents 

-0.015 -0.016 -0.017 -0.015 -0.113 -0.041 
(0.034) (0.034) (0.034) (0.034) (0.039)** (0.040) 

undergrad & pdoc 
university in the same 
state 

 0.162 0.142 0.141 0.164 0.170 
 (0.061)** (0.061)* (0.061)* (0.065)* (0.065)** 

schol & pdoc_advisor 
born in the same country 

  0.081 0.081 0.071 0.081 
  (0.031)** (0.032)* (0.040)+ (0.040)* 

scholar not born in the US   0.031 0.030 0.045 0.052 
  (0.061) (0.061) (0.066) (0.067) 

scholar not born in the US 
& same country as pdoc 
advisor 

  0.606 0.604 0.637 0.606 
  (0.202)** (0.201)** (0.195)** (0.201)** 

scholar and post-doc 
advisor are the same sex 

   0.017 0.010 0.028 
   (0.049) (0.051) (0.053) 

scholar and post-doc 
advisor are both female 

   0.090 0.059 -0.028 
   (0.131) (0.133) (0.136) 

Grad/Pdoc Scientific 
Closeness Quartile 
==Farthest 

    -1.038 -1.247 
    (0.073)** (0.082)** 

Grad/Pdoc Scientific 
Closeness Quartile 
==Farther 

    -0.662 -0.763 
    (0.058)** (0.062)** 

Grad/Pdoc Scientific 
Closeness Quartile  
== Far 

    -0.424 -0.488 
    (0.051)** (0.053)** 

grad and pdoc advisor 
both nas 

     -0.025 
     (0.089) 

ONLY grad advisor is nas      -0.018 
     (0.081) 

ONLY pdoc advisor is 
nas 

     -0.112 
     (0.037)** 

prior graduate advisor 
publications-log 

     -0.151 
     (0.033)** 

prior post-doc advisor 
publications-log 

     -0.089 
     (0.018)** 

Constant -1.149 -1.158 -1.231 -1.249 -0.602 0.159 
 (0.004)** (0.007)** (0.033)** (0.056)** (0.104)** (0.168) 
Observations 13335 13335 13335 13335 13334 13334 
pseudoR2 0.0126 0.0141 0.0170 0.0171 0.0850 0.0964 
Note: Errors are clustered at the Post-doc advisor level.  All models include Scholar-cohort dummies.  For 
Grad/Pdoc Scientific Closeness, excluded quartile (4) is the 25% closest dyads.  Robust standard errors in 
parentheses below; + significant at 10%; * significant at 5%; ** significant at 1%.     
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Table 6: Discrete-Time Hazard Rate Models of Scholar Patenting 
 (1) (2) (3) (4) (5) (6) (7) (8) 
Model Logit Logit Logit Logit Logit Poisson Poisson Poisson 
Dependent 
Var. 

Patents Patents Patents Patents Patents Papers Papers Papers 

IPTW 
Weights 

NO NO NO NO YES YES YES YES 

post-doc 
advisor was 
a patentor 

 0.701**  0.635** 0.753** 0.061  0.021
 (0.188)  (0.195) (0.249) (0.084)  (0.107)

post-doc 
advisor was 
on an SAB 

  0.425* 0.195 0.349  0.109 0.100
  (0.187) (0.198) (0.249)  (0.088) (0.111)

graduate 
advisor was 
a patentor 

0.328 0.330 0.286 0.311 0.156 0.013 0.008 0.009
(0.250) (0.254) (0.248) (0.253) (0.306) (0.135) (0.129) (0.129)

graduate 
advisor was 
on an SAB 

-0.166 -0.316 -0.257 -0.344 -0.397 0.104 0.095 0.095
(0.301) (0.305) (0.302) (0.305) (0.374) (0.134) (0.136) (0.136)

scholar is 
female 

-0.674* -0.731** -0.666* -0.724** -1.080** -0.206+ -0.200+ -0.201+
(0.267) (0.271) (0.267) (0.272) (0.338) (0.113) (0.111) (0.114)

scholar 
degree is an 
MD/PhD 

0.724** 0.584* 0.682* 0.579* 0.693* 0.109 0.117 0.113
(0.278)*
* 

(0.292) (0.283) (0.292) (0.325) (0.112) (0.107) (0.109)

scholar 
university 
flow of NIH 
dollars (log) 

-0.192+ -0.166 -0.163 -0.155 -0.145 0.032 0.043 0.042
(0.105) (0.106) (0.107) (0.107) (0.143) (0.047) (0.047) (0.049)

stock of 
university 
patents (log) 

0.304** 0.292** 0.298** 0.290** 0.267* 0.081 0.075 0.075
(0.097) (0.094) (0.098) (0.094) (0.124) (0.059) (0.060) (0.059)

Constant -0.864 -1.103 -1.417 -1.323 -1.618 2.192* 1.943* 2.011*
(2.224) (2.263) (2.265) (2.277) (2.718) (0.910) (0.911) (1.053)

Observation
s 

4307 4307 4307 4307 4307 4518 4518 4518

pseudoR2 0.0859 0.0965 0.0895 0.0971 0.1234    
 
Note: All models include year dummies, (every other year) cohort dummies, the type of Scholar Research 
(i.e. molecular, cellular, etc.), as well as both graduate and post-doc advisor’s prior commercialization 
score and research patentability stock during training.  Robust standard errors , clustered by Scholar, are 
in parentheses below; + significant at 10%; * significant at 5%; ** significant at 1% 
  



 

 48

Table 7: Discrete-Time Hazard Rate Models for Scientific Advisory Board Membership 
 (1) (2) (3) (4) (5) 
Model Logit Logit Logit Logit Logit 
Dependent Var. Patents Patents Patents Patents Patents 
IPTW Weights NO NO NO NO YES 
post-doc 
advisor was a 
patentor 

 0.415  0.397 0.802*
 (0.378)  (0.393) (0.388)

post-doc 
advisor was on 
an SAB 

  0.189 0.082 -0.511
  (0.402) (0.420) (0.532)

graduate 
advisor was a 
patentor 

0.189 0.155 0.148 0.140 0.330
(0.445) (0.460) (0.441) (0.449) (0.432)

graduate 
advisor was on 
an SAB 

0.510 0.410 0.473 0.398 0.468
(0.498) (0.510) (0.524) (0.530) (0.555)

scholar is 
female 

-0.582 -0.612 -0.589 -0.614 -1.031+
(0.464) (0.466) (0.466) (0.467) (0.544)

scholar degree 
is an MD/PhD 

0.691 0.609 0.659 0.601 0.823
(0.505) (0.518) (0.513) (0.520) (0.573)

scholar 
university flow 
of NIH dollars 
(log) 

-0.174 -0.170 -0.158 -0.163 -0.129
(0.201) (0.201) (0.211) (0.210) (0.211)

stock of 
university 
patents (log) 

0.305 0.305 0.299 0.302 -0.004
(0.202) (0.196) (0.200) (0.195) (0.218)

Constant -4.708 -5.438 -5.818 -4.855 -3.741
 (3.924) (4.017) (4.281) (4.147) (3.989)
Observations 4627 4627 4627 4627 4627
pseudoR2 0.1011 0.1040 0.1016 0.1041 0.1432
 
Note: All models include year dummies, (every other year) cohort dummies, the type of Scholar Research 
(i.e. molecular, cellular, etc.), as well as both graduate and post-doc advisor’s prior commercialization 
score and research patentability stock during training.  Robust standard errors , clustered by Scholar, are 
in parentheses below; + significant at 10%; * significant at 5%; ** significant at 1% 
  
 
 


