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Abstract

We study strategic voting in a Condorcet type model in which voters have
identical preferences but di¤erential information. Voting is costly and voluntary.
We show that under majority rule with voluntary voting, it is an equilibrium
to vote sincerely. Thus, in contrast to situations with compulsory voting, there
is no con�ict between strategic and sincere behavior. In large elections, the
equilibrium is shown to be unique. Furthermore, participation rates are such
that, in the limit, the correct candidate is elected with probability one. Finally,
when voting is costless, a social planner cannot improve over a purely voluntary
voting scheme.

1 Introduction

Condorcet�s celebrated Jury Theorem states that, when voters have common interests
but di¤erential information, sincere voting under majority rule produces the correct
outcome in large elections. There are two key components to the theorem. First, it
postulates that voting is sincere� that is, voters vote solely according to their private
information. Recent theoretical work shows, however, that sincerity is inconsistent
with rationality� it is typically not an equilibrium to vote sincerely. The reason is
that rational voters will make inferences about others�information and, as a result,
will have the incentive to vote against their own private information (Austen-Smith
and Banks, 1996).

Equilibrium voting behavior involves the use of mixed strategies� with positive
probability, voters vote against their private information. Surprisingly, this does
not overturn the conclusion of the Jury Theorem: In large elections, there exist
equilibria in which the correct candidate is always chosen despite insincere voting
(Feddersen and Pesendorfer, 1998). These convergence results, while powerful, rest
on equilibrium behavior that may be deemed implausible. Voting is not only insincere
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but random. Moreover, some voters have negative returns to voting� they would
rather not vote at all� this is a manifestation of the �swing voter�s curse�(Feddersen
and Pesendorfer, 1996).

Second, these generalizations of the Jury Theorem rely on the assumption that
voter turnout is high. Indeed it is implicitly assumed that voting is compulsory, so all
eligible voters show up to vote. When voting is voluntary and costly, however, there
is reason to doubt that voters will turn out in large enough numbers to guarantee
correct choices. Indeed, even if there were no swing voter�s curse, rational voters
would correctly realize that a single vote is unlikely to a¤ect the outcome so there is
little bene�t to voting. This is the �paradox of not voting�(Downs, 1957).

In this paper, we revisit the classic Condorcet Jury Theorem but with two amend-
ments to the environment. First, we relax the assumption that the size of the elec-
torate is �xed and commonly known in favor of one where the size is random as in
the Poisson model introduced by Myerson (1998 & 2000). This, by itself, a¤ects none
of the �ndings discussed above but, as Myerson (1998) has demonstrated, leads to
a simpler analysis. Second, and more important, we relax the (implicit) assumption
that voting is compulsory (i.e., it is not possible to abstain). Speci�cally, voters incur
private costs of voting and may avoid these by abstaining. Voters in our model are
fully rational, so the twin problems of strategic voting and the paradox of not voting
are present.

We show that under costly and voluntary voting,

1. There exists an equilibrium with endogenously determined participation rates
and sincere voting. Thus, there is no con�ict between rationality and sincerity.

In large elections:

2. The equilibrium we study is unique.

3. While the turnout percentage goes to zero, the expected number of voters is
unbounded� regardless of the distribution of voting costs.

4. Participation rates are such that the correct candidate is always elected.

Motivated by the observation that many countries have enacted mandatory voting
policies, we compare welfare under the voluntary scheme with several alternatives.
We �nd that:

5. Schemes designed to encourage full participation are never optimal; and

6. When voting is costless, voluntary voting maximizes welfare.

To summarize, adding the realistic feature of voluntary and costly voting to the
classic Condorcet model restores many of the desirable properties of the original
Jury Theorem. Sincere voting obtains as an equilibrium, and, in large elections, the
correct candidate is always chosen. Equilibrium payo¤s are non-negative and so with
voluntary voting, the swing voter�s curse is lifted.
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To see why voluntary (and costly) voting may lead to sincere voting behavior,
consider a two-candidate election in which voters have 50-50 prior beliefs as to the
�correct�candidate. Each voter receives a private signal about the suitability of the
candidates. Suppose that signals in favor of A are more accurate than those in favor
of B: In other words, a signal in favor of A is more likely in situations in which A is
the correct candidate (say the chances of this are 75%) than a signal in favor of B is
in situations in which B is the correct candidate (say the chances of this are 60%).

First, suppose voting is compulsory and there is a large population. Suppose
further that all voters save one, vote sincerely and consider a voter with a signal in
favor of A. This voter is pivotal� his vote a¤ects the outcome� if the vote counts
are roughly equal. But since signals for A are more accurate than signals for B, a
roughly 50-50 vote split is more likely when B is the right candidate. Thus a voter
with signal A should rationally vote for B: It is not an equilibrium for everyone to
vote sincerely.

Now suppose that voting is voluntary and participation behavior is such that
those with information favorable to B are more likely to turn out than those with
information favorable to A: The fact that the votes are roughly the same does not
automatically imply that the signals are biased towards B: voters in favor of B are
more likely to vote, and this mitigates the biased inference from the split vote itself.
Our main result exploits this reasoning and shows that, in fact, the endogenously
determined participation rates lead to sincere voting behavior.

Related literature Early work on the Condorcet Jury Theorem viewed it as a
purely statistical phenomenon� an expression of the law of large numbers. Perhaps
this was the way that Condorcet himself viewed it. Game theoretic analyses of the
Jury Theorem originate in the work of Austen-Smith and Banks (1996). They show
that sincere voting is generally not consistent with equilibrium behavior.

Feddersen and Pesendorfer (1998) derive the (�insincere�) equilibria of the voting
games speci�ed above� these involve mixed strategies� and then study their limiting
properties. They show that, despite the fact that sincere voting is not an equilibrium,
large elections still aggregate information correctly. McLennan (1998) views such
voting games, in the abstract, as games of common interest and argues on that
basis that there are always Pareto e¢ cient equilibria of such games. Apart from
the fact that voting is costly and voluntary, our basic setting is the same as that in
these papers� there are two candidates, voters have common interests but di¤erential
information (sometimes referred to as �common values�).

A separate strand of the literature is concerned with costly voting and endogenous
participation but in settings in which voter preferences are diverse (sometimes referred
to as �private values�). Palfrey and Rosenthal (1985) consider costly voting with
privately known costs but where preferences over outcomes are commonly known (see
also Palfrey and Rosenthal, 1983 and Ledyard, 1984 for models in which the costs are
also common knowledge). These papers are interested in formalizing Downs�paradox
of not voting. Börgers (2004) studies majority rule in a costly voting model with
private values� that is, with diverse rather than common preferences. He compares
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voluntary and compulsory voting and argues that individual decisions to vote or not
do not properly take into account a �pivot externality�� the casting of a single vote
decreases the value of voting for others. As a result, participation rates are too high
relative to the optimum and a law that makes voting compulsory would only worsen
matters. Krasa and Polborn (2007) show that the externality identi�ed by Börgers�
is sensitive to his assumption that the prior distribution of voter preferences is 50-
50. With unequal priors, under some conditions, the externality goes in the opposite
direction and there are social bene�ts to encouraging increased turnout via �nes for
not voting.

Ghosal and Lockwood (2007) reexamine Börgers�result when voters have more
general preferences� including common values� and show that it is sensitive to the
private values assumption. Finally, Feddersen and Pesendorfer (1996) examine ab-
stention in a common values model when voting is costless. The number of voters is
random, some are informed of the state, while others have no information whatso-
ever. Abstention arises in their model as a result of the aforementioned swing voter�s
curse� in equilibrium, a fraction of the uninformed voters do not participate.

All of this work postulates a �xed and commonly known population of voters.
Myerson (1998 & 2000) argues that precise knowledge of the number of eligible vot-
ers is an idealization at best, and suggests an alternative model in which the size of
the electorate is a Poisson random variable. He shows that this speci�cation leads
to a simpler analysis and derives the mixed equilibrium for the majority rule in large
elections (in a setting where signal precisions are asymmetric). He then studies its
limiting properties as the number of expected voters increases, exhibiting informa-
tion aggregation results parallel to those derived in the known population models.
Feddersen and Pesendorfer (1999) use the Poisson framework to study abstention
when voting is costless but preferences are diverse. In large elections, the fraction of
informative (as opposed to ideological) voters goes to zero; however information still
aggregates. We also �nd it convenient to adopt Myerson�s Poisson game technology
but are able to show that there is a sincere voting equilibrium for any (expected) size
electorate.

The paper is organized as follows. In Section 2 we introduce the basic environment
and Myerson�s Poisson model. As a benchmark, in Section 3 we �rst consider the
model with compulsory voting and establish that sincere voting is not an equilibrium.
In Section 4, we introduce the model with voluntary and costly voting. We �rst
show that under the assumption of sincere voting, there exist positive equilibrium
participation levels. We then show that given those participation levels, sincere voting
is incentive compatible. Section 5 studies the limiting properties of the equilibria
considered in the previous section� it is shown that in the limit, information fully
aggregates and the correct candidate is elected with probability one. In Section 6
we show that all equilibria must be sincere and then use the information aggregation
properties of large elections to show that there is, in fact, a unique equilibrium.
Finally, Section 7 compares social welfare under voluntary versus compulsory voting.
We show that in large elections, even if it is costless to vote, voluntary voting is
welfare superior to compulsory voting.
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All proofs are collected in the appendices.

2 The Model

There are two candidates, named A and B, who are competing in an election decided
by majority voting.1 There are two equally likely states of nature, � and �.2 Candi-
date A is the better choice in state � while candidate B is the better choice in state
�: Speci�cally, in state � the payo¤ of any citizen is 1 if A is elected and 0 if B is
elected. In state �; the roles of A and B are reversed.

The size of the electorate is a random variable which is distributed according to
a Poisson distribution with mean n: Thus the probability that there are exactly m
eligible voters (or citizens) is e�nnm=m!.

Prior to voting, every citizen receives a private signal Si regarding the true state of
nature. The signal can take on one of two values, a or b: The probability of receiving a
particular signal depends on the true state of nature. Speci�cally, each voter receives
a conditionally independent signal where

Pr [a j �] = r and Pr [b j �] = s

We suppose that both r and s are greater than 1
2 , so that the signals are informative

and less than 1, so that they are noisy. Thus, signal a is associated with state �
while the signal b is associated with �: The posterior probabilities of the states after
receiving signals are

q (� j a) = r

r + (1� s) and q (� j b) =
s

s+ (1� r)

We assume, without loss of generality, that r > s: It may be veri�ed that

q (� j a) < q (� j b)

Thus the posterior probability of state � given signal a is smaller than the posterior
probability of state � given signal b even though the �correct� signal is more likely
in state �.

Pivotal Events An event is a pair of vote totals (j; k) such that there are j votes
for A and k votes for B: An event is pivotal for A if a single additional vote for A
will a¤ect the outcome of the election. We denote the set of such events by PivA.
One additional vote for A makes a di¤erence only if either (i) there is a tie; or (ii)
A has one vote less than B: Let T = f(k; k) : k � 0g denote the set of ties and let
T�1 = f(k � 1; k) : k � 1g denote the set of events in which A is one vote short of a
tie. Similarly, PivB is de�ned to be the set of events which are pivotal for B: This
set consists of the set T of ties together with events in which A has one vote more

1 In the event of a tied vote, the winning candidate is chosen by a fair coin toss.
2The analysis is unchanged if the states are not equally likely. We study the simple case only for

notational ease.
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than B. Let T+1 = f(k; k � 1) : k � 1g denote the set of events in which A is ahead
by one vote.

Let �A be the expected number of votes for A in state � and let �B be the expected
number of votes for B in state �: Analogously, let �A and �B be the expected number
of votes for A and B; respectively, in state �: Since it may be possible for voters to
abstain, it is only required that �A + �B � n and �A + �B � n:

Consider an event where (other than voter 1) the realized electorate is of size
m and there are k votes in favor of A and l votes in favor of B. The number of
abstentions is thus m� k � l: The probability of this event in state � is

Pr [(k; l;m) j �] = e�n

m!

�
m

k + l

��
k + l

k

�
(n� �A � �B)m�k�l �kA�lB

It is useful to rearrange the expression as follows:

Pr [(k; l;m) j �] = e�(n��A��B)
(n� �A � �B)m�k�l

(m� k � l)!

�e��A �
k
A

k!
e��B

�lB
l!

Of course, the size of the electorate is unknown to voter 1. The probability of the
event (k; l), irrespective of the size of the electorate, is

Pr [(k; l) j �] =
1X

m=k+l

Pr [(k; l;m) j �]

= e��A
�kA
k!
e��B

�lB
l!

The probability of the event (k; l) in state � may similarly be obtained by replacing
� with � .

The probability of a tie in state � is

Pr [T j �] = e��A��B
1X
k=0

�kA
k!

�kB
k!

(1)

while the probability that A falls one vote short in state � is

Pr [T�1 j �] = e��A��B
1X
k=1

�k�1A

(k � 1)!
�kB
k!

(2)

The probability Pr [T+1 j �] that A is ahead by one vote may be written by exchang-
ing �A and �B in (2). The corresponding probabilities in state � are obtained by
substituting � for �.

In what follows, it will be useful to rewrite the pivot probabilities in terms of
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modi�ed Bessel functions (see Abramowitz and Stegun, 1965), de�ned by

I0 (z) =
1X
k=0

�
z
2

�k
k!

�
z
2

�k
k!

I1 (z) =
1X
k=1

�
z
2

�k�1
(k � 1)!

�
z
2

�k
k!

In terms of modi�ed Bessel functions, we can rewrite the probabilities associated with
close elections as

Pr [T j �] = e��A��BI0 (2
p
�A�B)

Pr [T�1 j �] = e��A��B
�
�A
�B

�� 1
2
I1 (2

p
�A�B) (3)

Again, the corresponding probabilities in state � are found by substituting � for �:
For our asymptotic results it is useful to note that when z is large, the modi�ed

Bessel functions can be approximated as follows3 (see Abramowitz and Stegun, 1965,
p. 377)

I0 (z) �
ezp
2�z

� I1 (z) (4)

3 Compulsory Voting

While our main concern is with situations in which voting is voluntary, it is useful
to �rst study the benchmark case of compulsory voting. Austen-Smith and Banks
(1996) showed that sincere voting does not constitute an equilibrium in a model with
a �xed number of voters. Here, we show that this conclusion extends to the Poisson
framework as well.4

Suppose that voting is sincere; that is, all those with a signal of a vote for A
and all those with a signal of b vote for B: Under compulsory and sincere voting, the
expected number of votes for A in state � is simply n times the chance that a voter
gets an a signal; that is, �A = nr: The expected number of votes for B in state �
is simply n times the probability of a b signal; that is, �B = n (1� r) : Similarly, in
state � the expected vote totals are �A = n (1� s) and �B = ns:

Since both � !1 and � !1, the formulae in (4) imply that for large n,

Pr [PivA j �] + Pr [PivB j �]
Pr [PivA j �] + Pr [PivB j �]

� e2n
p
r(1�r)

e2n
p
s(1�s)

�K (r; s) (5)

whereK (r; s) is positive and, with compulsory voting, independent of n: If r > s > 1
2 ;

s (1� s) > r (1� r) and so the expression in (5) goes to zero as n increases. This
implies that, when n is large and a voter is pivotal, state � is in�nitely more likely

3X (n) � Y (n) means that limn!1 (X (n) =Y (n)) = 1:
4See also Myerson (1998).
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than state �: Thus, a type voters will not wish to vote sincerely.5 It then follows
that:

Proposition 1 If voting is compulsory, sincere voting is not an equilibrium in large
elections.

In Section 7 below, we reexamine compulsory voting in more detail with a view
to comparing it to the case of voluntary voting.

4 Voluntary Voting

In this section, we simultaneously introduce two features to the model. First, we allow
for the possibility of abstention� every citizen need not vote. Second, we suppose
that citizens have heterogeneous costs of going to the polls, which can be avoided
by staying at home. Speci�cally, a citizen�s cost of voting is private information and
determined by an independent realization from a continuous probability distribution
F with support [0; 1] : We suppose that F admits a density f that is strictly positive
on (0; 1) : Finally, we assume that voting costs are independent of the signal as to
who is the better candidate.

Thus prior to the voting decision, each citizen has two pieces of private information�
his cost of voting and a signal regarding the state. We will show that there exists an
equilibrium of the voting game with the following features.

1. There exists a pair of positive threshold costs, ca and cb, such that a citizen with
a cost realization c and who receives a signal i = a; b votes if and only if c � ci:
The threshold costs determine di¤erential participation rates F (ca) = pa and
F (cb) = pb:

2. All those who vote do so sincerely� that is, all those with a signal of a vote for
A and those with a signal of b vote for B:

In the model with voluntary and costly voting, our main result is

Theorem 1 With voluntary voting under majority rule, there exists an equilibrium
with positive participation in which all voters vote sincerely. In large elections, the
equilibrium is unique, and the right candidate is elected with probability one.

The result is established in four steps. First, we consider only the participation
decision. Under the assumption of sincere voting, we establish the existence of posi-
tive threshold costs and the corresponding participation rates. Second, we show that
given the participation rates determined in the �rst step, it is indeed an equilibrium
to vote sincerely. Third, we show that in large elections the participation rates are
such that, in the limit, information fully aggregates� the right candidate is chosen
with probability one. Fourth, we show that in large elections, the equilibrium is
unique.

5 If r = s; then the ratio of the pivot probabilities is always 1 and incentive compatibility holds.
This corresponds to one of the non-generic cases identi�ed by Austen-Smith and Banks (1996) in a
�xed n model. See also Myerson (1998).
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4.1 Equilibrium Participation Rates

We now show that when all those who vote do so sincerely, there is an equilibrium
in cuto¤ strategies. That is, there exists a threshold cost ca > 0 such that all
voters receiving a signal of a and having a cost c � ca go to the polls and vote for
A: Analogously, there exists a threshold cost cb > 0 for voters with a signal of b:
Equivalently, one can think of a participation probability, pa = F (ca) that a voter
with an a signal goes to the polls and a probability pb = F (cb) that a voter with a b
signal goes to the polls.

Under these conditions, a given voter will vote for A in state � only if he receives
the signal a (which happens with probability r) and has a voting cost lower than
ca (which happens with probability pa). Thus the expected number of votes for A
in state � is �A = nrpa: Similarly, the expected number of votes for B in state
� is �B = n (1� r) pb: The expected number of votes for A and B in state � are
�A = n (1� s) pa and �B = nspb, respectively.

We look for participation rates pa and pb such that a voter with signal a and cost
ca = F

�1 (pa) is indi¤erent between going to the polls and staying home. Formally,
this amounts to the condition that

Ua (pa; pb) � q (� j a) Pr [PivA j �]� q (� j a) Pr [PivA j �] = F�1 (pa) (IRa)

where the pivot probabilities are determined using the expected vote totals � and
� as above. Likewise, a voter with signal b and cost cb = F�1 (pb) must also be
indi¤erent.

Ub (pa; pb) � q (� j b) Pr [PivB j �]� q (� j b) Pr [PivB j �] = F�1 (pb) (IRb)

Proposition 2 There exist participation rates p�a 2 (0; 1) and p�b 2 (0; 1) that simul-
taneously satisfy IRa and IRb.

To see why there are positive participation rates, suppose to the contrary that
type a voters, say do not participate at all. Consider a citizen with signal a: Since
no other a types vote, the only circumstance in which he will be pivotal is either if
no b types show up or if only one b type shows up. Conditional on being pivotal, the
likelihood ratio of the states is simply the ratio of the pivot probabilities, that is,

Pr [PivA j �]
Pr [PivA j �]

=
e�n(1�r)pb

e�nspb
� 1 + n (1� r) pb

1 + nspb

Notice that the ratio of the exponential terms favors state � while the ratio of the
linear terms favors state �: It turns out that the exponential terms always dominate.
(Formally, this follows from the fact that the function e�x (1 + x) is strictly decreasing
for x > 0 and that s > 1� r:) Since state � is more likely than � for a pivotal a type
voter, the payo¤ from voting is positive.

The next result shows that b type voters are more likely to show up at the polls
than a type voters.
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Lemma 1 If r > s; then any solution to IRa and IRb satis�es p�a < p
�
b :

To see why the result holds, consider the case where the participation rates are
the same for both types. In that case, no inference may be drawn from the overall
level of turnout, only from the vote totals. Consider a particular voter. When the
votes of the others are equal in number, it is clear that a tie among the other voters
is more likely in state � than in state � (since b signals are noisier than a signals and
everyone is voting sincerely) and this is true whether the voter has an a signal or a
b signal. Now consider a voter with an a signal. When the votes of the others are
such that A is one behind, then once the voter includes his own a signal (and votes
sincerely), the overall vote is tied and by the same reasoning as above, an overall tie
is more likely in state � than in �: Finally, consider a voter with a b signal. When
the votes of the others are such that B is one behind, then once the voter includes his
own b signal (and again votes sincerely), the overall vote is tied once more. Again,
this is more likely in � than in �:

Thus if participation rates are equal, chances of being pivotal are greater in state
� than in state �: This implies that voting is more valuable for someone with a b
signal than for someone with an a signal. But then the participation rates cannot be
equal.

The formal proof (in Appendix A) runs along the same lines but applies to all
situations in which pa � pb:

The workings of the proposition may be seen in the following example.

Example 1 Consider an expected electorate n = 100: Suppose the signal precisions
r = 3

4 and s =
2
3 and that the voting costs are distributed according to F (c) = c

1
3 .

Then p�a = 0:152 and p
�
b = 0:181:

Figure 1 depicts the IRa and IRb curves for this example. Notice that neither
curve de�nes a function. In particular, for some values of pb; there are multiple
solutions to IRa. To see why this is the case, notice that for a �xed pb; when pa is
small there is little chance of a close election outcome and hence little bene�t to a
types of voting. As the proportion of a types who vote increases, the chances of a
close election also increase and hence the bene�ts from voting rise. However, once pa
becomes relatively large, the chances of a close election start falling and, consequently,
so do the bene�ts from voting.

4.2 Sincere Voting

In this subsection we establish that given the participation rates as determined above,
it is a best-response for every voter to vote sincerely.

Likelihood Ratios The following result is key in establishing this� it compares
the likelihood ratio of � to � conditional on the event PivB to that conditional on the
event PivA: It requires only that the voting behavior is such that expected number
of votes for A is greater in state � than in state � and the reverse is true for B:While
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Figure 1: Equilibrium Participation Rates

the lemma is more general, it is easy to see that sincere voting behavior satis�es the
assumptions of the lemma.

Lemma 2 (Likelihood Ratio) If voting behavior is such that �A > �A and �B <
�B, then

Pr [PivB j �]
Pr [PivB j �]

>
Pr [PivA j �]
Pr [PivA j �]

(6)

Since �A > �A and �B < �B; then, on �average,� the ratio of A to B votes is
higher in state � than in state �: Of course, voters�decisions do not depend on the
average outcome, but rather on pivotal outcomes. The lemma shows that even when
one considers the set of �marginal�events where the vote totals are close (and a voter
is pivotal) it is still the case that A is more likely to be leading in state � and more
likely to be trailing in state � (details are provided in Appendix A).

Incentive Compatibility With the Likelihood Ratio Lemma in hand, we now
examine the incentives to vote sincerely. Let (p�a; p

�
b) be equilibrium participation

rates. A voter with signal a and cost c�a = F
�1 (p�a) is just indi¤erent between voting
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and staying home, that is,

q (� j a) Pr [PivA j �]� q (� j a) Pr [PivA j �] = F�1 (p�a) (IRa)

We want to show that sincere voting is optimal for a �type a� voter if others are
voting sincerely. That is,

q (� j a) (Pr [PivA j �]� q (� j a) Pr [PivA j �])
� q (� j a) Pr [PivB j �]� q (� j a) Pr [PivB j �] (ICa)

The left-hand side is the payo¤ to a type a voter from voting for A whereas the
right-hand side is the payo¤ to voting for B:

Now notice that since p�a > 0; IRa implies

Pr [PivA j �]
Pr [PivA j �]

>
q (� j a)
q (� j a)

and so applying Lemma 2 it follows that,

Pr [PivB j �]
Pr [PivB j �]

>
q (� j a)
q (� j a)

which is equivalent to

q (� j a) Pr [PivB j �]� q (� j a) Pr [PivB j �] < 0

and so the payo¤ from voting for B with a signal of a is negative. Thus ICa holds.
We have argued that if (p�a; p

�
b) are such that a voter with signal a and cost F

�1 (p�a)
is just indi¤erent between participating or not, then all voters with a signals who
have lower costs, have the incentive to vote sincerely. Recall that this was not the
case under compulsory voting.

What about voters with b signals? Again, since (p�a; p
�
b) are equilibrium partic-

ipation rates, then a voter with signal b and cost c�b = F�1 (p�b) is just indi¤erent
between voting and staying home, that is,

q (� j b) Pr [PivB j �]� q (� j b) Pr [PivB j �] = F�1 (p�b) (IRb)

We want to show that a voter with signal b is better o¤ voting for B over A; that is

q (� j b) Pr [PivB j �]� q (� j b) Pr [PivB j �]
� q (� j b) Pr [PivA j �]� q (� j b) Pr [PivA j �] (ICb)

As above, since p�b > 0; the left-hand side of ICb is strictly positive and Lemma 2
implies that the right-hand side is negative.

We have thus established,

Proposition 3 Under voluntary participation, sincere voting is incentive compatible.
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Proposition 3 shows that it is optimal for each participating voter to vote accord-
ing to his or her own private signal alone, provided that others are doing so. One may
speculate that equilibrium participation rates are such that, conditional on being piv-
otal, the posterior assessment of � and � is 50-50. Thus, a voter�s own signal �breaks
the tie�and sincere voting is optimal. This simple intuition turns out to be incorrect,
however. In Example 1, for instance, this posterior assessment favors state � slightly;
that is, Pr [� j PivA [ PivB] < 1

2 : But once an a type voter takes his own signal also
into account, the posterior assessment favors �, that is, Pr [� j a; P ivA [ PivB] > 1

2 :

5 Large Elections

Together, Propositions 2 and 3 show that there exist a pair of positive equilibrium
participation rates which induce sincere voting. In this section, we study the limiting
behavior of these rates. We will show that although the participation rates go to zero
as n increases, they do so su¢ ciently slowly so that the expected number of voters
goes to in�nity.

The approximation in (4) implies that if
p
�A�B !1; as n!1 then, for large

n

Pr [T j �] � e�(�A+�B�2
p
�A�B)p

4�
p
�A�B

=
e�(

p
�A�

p
�B)

2p
4�
p
�A�B

(7)

Also, the probability of �o¤set�events of the form T+1 or T�1 can be approximated
as follows

Pr [T�1 j �] � Pr [T j �]�
�
�A
�B

�� 1
2

(8)

And of course, the corresponding probabilities in state � can again be approximated
by substituting � for �.

The probabilities of the pivotal events de�ned in Section 2 can then be approxi-
mated by using (7) and (8).6 In state �;

Pr [PivA j �] � 1
2 Pr [T j �]�

�
1 +

q
�B
�A

�
(9)

Pr [PivB j �] � 1
2 Pr [T j �]�

�
1 +

q
�A
�B

�
(10)

Again, the pivot probabilities in state � can similarly be obtained by substituting �
for �:

As a �rst step we have7

Lemma 3 In any sequence of sincere voting equilibria, the participation rates tend
to zero; that is, lim sup pa (n) = lim sup pb (n) = 0:

To see why this is the case, suppose to the contrary that one or both types of
voters participated at positive rates even in the limit. Then an in�nite number of

6The approximation formulae for the pivot probabilities also follow from Myerson (2000).
7Unless otherwise speci�ed, all limits are taken as n!1:
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voters would turn out and the gross bene�t to voting would go to zero since there
is no chance that an individual�s vote would be pivotal. Since voting is costly, a
voter would be better o¤ staying at home than voting under these circumstances. Of
course, this contradicts the notion that participation rates are positive in the limit.

On its face, Lemma 3 seems inconsistent with observed turnout rates in large
elections. Indeed, a general criticism of costly voting models is that they predict
implausibly low rates of voter participation. However, when voting costs are hetero-
geneous, this is no longer the case. For a �xed (expected) electorate n, there exist
voting cost distributions F , and signal precisions, r and s, that are capable of ra-
tionalizing observed turnout rates. Consider a typical Congressional election in the
US.8 The average number of the eligible voters in a Congressional district is about
400,000 and typical turnout rates in non-presidential election years are about 45%.

Example 2 Consider an expected electorate n = 400; 000: Suppose the signal preci-
sions r = 0:65 and s = 0:55 and that the voting costs are distributed according to
F (c) = c

1
4000 . Then p�a � 0:4 and p�b � 0:5:

While Lemma 3 shows that, for a �xed cost distribution F; participation rates
go to zero as the number of potential voters goes to in�nity, there is, in fact, a race
between the shrinking participation rates and the growing size of the electorate. A
common intuition is that the outcome of this race depends on the shape of the cost
distribution� particularly in the neighborhood of 0. As we show below, however,
sincere voting equilibria have the property that the number of voters (of either type)
becomes unbounded regardless of the shape of the cost distribution. In other words,
the problem of too little participation does not arise in the limit� even though voting
is voluntary and costly. Formally,

Proposition 4 In any sequence of sincere voting equilibria, the expected number of
voters with either signal tends to in�nity; that is,

lim inf npa (n) =1 = lim inf npb (n)

Proof. The proof is a direct consequence of Lemmas 6 and 7 in Appendix B.

On its face, the result seems intuitive. If there is only a �nite turnout in expecta-
tion, then there is a positive probability that a voter is pivotal and, one might guess,
this would mean that there is a positive bene�t from voting; thus contradicting the
idea that the cost thresholds go to zero in the limit. However, the mere fact of being
pivotal with positive probability is no guarantee of a positive bene�t from voting. It
may well be that, conditional on being pivotal, the likelihood ratio is exactly 50-50
under sincere voting. In that case, there would be no bene�t from voting whatsoever
and hence the cost threshold would, appropriately, go to zero.

To gain some intuition for why this is never the case, it is helpful to consider
what happens when a and b signals are equally precise, that is, when r = s: It is

8The Electoral College system in US Presidential races complicates what it means to be pivotal.
Hence, we illustrate the model using House races.
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easy to see that in that case, the participation rates for a and b voters will be the
same, and hence the likelihood of a given state will depend only on the relative vote
totals. Consider a voter with an a signal when aggregate turnout is �nite. This voter
is pivotal under two circumstances� when A is behind by a vote and when the vote
total is tied. When A is behind by a vote, the inclusion of the voter�s own a signal
leads to a 50-50 likelihood of � versus �: In other words, when the voter includes her
own signal, these events are not decisive as to the likelihood of � versus �: When
the vote total is tied, the likelihood ratio favors �: Thus, the overall likelihood ratio
favors �:

Of course, when signal precisions are not the same, turnout rates are no longer
equal and the inference from the vote totals is more complicated. However, when
voting is e¢ cient (that is, A is more likely to win in state �), then the same basic
intuition obtains. Voters endogenously participate in such a way that the likelihood
ratios turn on the tie events rather than on the events in which A is either ahead
or behind by one vote. As a consequence, the likelihood ratio for a voter with an a
signal favors � and hence there is a strictly positive bene�t to voting. This, in turn,
implies that the expected number of voters becomes unbounded. For the ine¢ cient
case, the argument is more delicate. The formal proof, which is somewhat involved,
shows, however, that the likelihood ratio cannot be 50-50 for both sides.

We now turn to the question of whether the equilibrium is e¢ cient under costly
voting. In other words, is it the case that in large elections, the �right�candidate is
elected? One may have thought that we have, in e¤ect, already answered this question
(in the a¢ rmative) by showing that voting is sincere and expected participation is
unbounded in large elections. However, this ignores that the fact that voters with
di¤erent signals turn out at di¤erent rates. If turnout is too lop-sided in favor of
B versus A, then even with sincere voting, the election could still fail to choose the
�right�candidate.

5.1 Information Aggregation

In large elections, candidate A is chosen in state � if and only if rpa > (1� r) pb
and candidate B is chosen in state � if and only if (1� s) pa < spb: Information
aggregation thus requires that for large n; the equilibrium participation rates satisfy

1� r
r

<
pa
pb
<

s

1� s (11)

First, recall from Lemma 1 that any solution to the threshold equations satis�es
pa < pb: Thus in large elections, in equilibrium, b types turn out to vote at higher
rates than do a types. Since s > 1

2 ; this implies that the second inequality holds and
so in large elections, B wins in state � with probability 1:

In state �; however, the larger turnout for B is detrimental. We now argue that
in large elections, the �rst inequality also holds.

First, note that since with sincere voting, it follows from Lemma 7 (in Appendix
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B) that

lim sup

�
�A
�B

�� 1
2

<1 and lim sup
�
�A
�B

�� 1
2

<1

Hence in the expressions for the pivot probabilities (speci�cally, (9) and the corre-
sponding formula in state �), the exponential terms dominate in the limit. Thus we
have

Pr [PivA j �]
Pr [PivA j �]

=
e�(

p
�A�

p
�B)

2

e�(
p
�A�

p
�B)

2 �K (�A; �B; �A; �B)

where K is a function that stays �nite in the limit.
Thus it must be the case that in the limit

(
p
�A �

p
�B)

2 = (
p
�A �

p
�B)

2 (12)

In particular, suppose that the left-hand side of (12) was greater than the right-hand
side. In that case,

lim
Pr [PivA j �]
Pr [PivA j �]

= 0

and it would then follow that state � is in�nitely more likely in the event PivA than
is state �: This, however, would imply that the gross bene�t to a voter with signal a
from voting is negative, which contradicts Lemma 3. Similarly, if the left-hand side
was smaller then it would then follow that state � is in�nitely more likely in the event
PivB than is state �: This, however, would then imply that the gross bene�t to a
voter with signal b from voting is negative, which also contradicts Lemma 3. Thus
(12) must hold in the limit.

Under sincere voting �A = nrpa; �B = n (1� r) pb; �A = n (1� s) pa and �B =
nspb; and so (12) can be rewritten as

p
s�

p
1� s

q
pa
pb
� �

�p
r
q

pa
pb
�
p
1� r

�
and the left-hand side is positive since pb > pa: Now observe that if (1� r) pb � rpa;
then we have p

s�
p
1� s

q
pa
pb
�
p
1� r �

p
r
q

pa
pb

and this is impossible since both r and s are greater than 1
2 (Lemma 7 in Appendix

B ensures that papb is bounded). Thus we must have, that for large n; rpa > (1� r) pb.
We have thus shown that information fully aggregates in large elections.

Proposition 5 In any sequence of sincere voting equilibria, the probability that the
right candidate is elected in each state (A in state � and B in �) goes to one.

Note that as a result of the reasoning above, we know that

p
s�

p
1� s

q
pa
pb
�
p
r
q

pa
pb
�
p
1� r
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and so we obtain that ratio of the participation probabilities satis�es

lim

r
pa
pb
=

p
1� r +

p
s

p
r +

p
1� s

(13)

6 Uniqueness

In this section, we show that with voluntary and costly voting, there is a unique
equilibrium when n is large. Recall that the equilibrium derived in the previous
sections has the following features: (i) voting is sincere; and (ii) the cost thresholds
are determined by IRa and IRb.

The uniqueness of the equilibrium is established in two steps. In the �rst step,
we show that all equilibria must involve sincere voting (this result does not require
n to be large). It is easy to see that at least one type must vote sincerely. Let
U (A; a) denote type a�s payo¤ from voting for A: Similarly, de�ne U (B; a) ; U (A; b)
and U (B; b) : If neither type votes sincerely, then we have

U (A; a) > U (A; b) � U (B; b)

where the �rst inequality follows from the fact that all else being equal, voting for
A must be better having received a signal in favor of A than a signal in favor of B:
The second inequality follows from the fact that b types �nd it pro�table to vote
insincerely. At the same time, we also have

U (B; b) > U (B; a) � U (A; a)

and the two inequalities contradict each other. To show that, in fact, both types vote
sincerely we show that the Likelihood Ratio Lemma holds even if voting is insincere.
The Likelihood Ratio condition then shows that it cannot be a best response for either
type to vote insincerely (Lemma 10 in Appendix C). Thus all equilibria involve sincere
voting.

The second and �nal step is to show that when n is large, there is a unique so-
lution to the cost thresholds. We know that in the limit, all sincere voting equilibria
are e¢ cient: A wins in state � and B wins in state �: Thus, for large n; the equi-
librium participation probabilities satisfy (11). It can be shown that for any pair of
participation probabilities satisfying (11), the IRa curve is steeper than the IRb curve
(Lemma 11 in Appendix C). Thus they can intersect only once and so we obtain,

Proposition 6 In large elections, there is a unique equilibrium.

Proof. See Appendix C.

7 Welfare

We now turn to the welfare properties of the voluntary voting model. As a benchmark,
consider a planner who can choose both turnout rates and voting behavior. Suppose
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further that voting costs are of no concern; the planner only wishes to maximize the
probability that the right candidate is chosen. The optimal policy seems obvious:
Surely the planner can do no better than to require that all voters come to the polls
and vote sincerely. After all, this uses all of society�s available information in making
a choice and, presumably more information leads to better choices.

While this intuition seems compelling, it is, in fact, incorrect. The �aw is that,
while the average informational contribution of a voter is positive, the marginal con-
tribution need not be. To see this, consider the supposedly ideal situation where
everyone is participating and voting sincerely. What happens if the participation by
voters with a signals decreases by a small amount? The welfare impact of decreased
participation comes only from tied or near-tied outcomes. Since voters have noisier
signals in state �; ties and near-ties are more likely in this state.9 Thus, a decrease
in participation by a types increases the error rate in state �, but reduces it in state
�: Since the latter is more likely, the net e¤ect of reduced participation by a types is
to increase welfare. Proposition 7 formalizes this argument.

Proposition 7 Suppose that n � ln( r
1�s)

2
�p

s(1�s)�
p
r(1�r)

� : Then full participation and
sincere voting are not welfare optimal.

Proof. The probability that A wins in state � is

W (�) = 1
2 Pr [T j �] +

1X
m=1

Pr [Tm j �]

where Tm denotes the set of events in which A beats B by m votes. Similarly, the
probability that B wins in state � is

W (�) = 1
2 Pr [T j �] +

1X
m=1

Pr [T�m j �]

where T�m denotes the set of events in which B beats A by m votes. Let W =
1
2W (�) + 1

2W (�) denote the overall probability that the right candidate wins.
We will argue that when pa = 1 and pb = 1; that is, there is full participation and

voting is sincere,
@W

@pa
< 0

To see this note that for all m;

@ Pr [Tm j �]
@pa

= nr (Pr [Tm�1 j �]� Pr [Tm j �])

@ Pr [T�m j �]
@pa

= n (1� s) (Pr [T�m�1 j �]� Pr [T�m j �])

9This requires a modestly large number of voters. Obviously, if there is only a single voter, ties
are equally likely in both states. A precise de�nition of �modestly large�is o¤ered in the proposition
below.
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and some routine calculations using the formulae for W (�) and W (�) shows that

@W

@pa
= 1

2nrPr [PivA j �]�
1
2n (1� s) Pr [PivA j �]

Next observe that when pa = 1 and pb = 1;

nrPr [PivA j �] = 1
2e
�nn

�
rI0

�
2n
p
r (1� r)

�
+
p
r (1� r)I1

�
2n
p
r (1� r)

��
(14)

whereas

n (1� s) Pr [PivA j �] = 1
2e
�nn

�
(1� s) I0

�
2n
p
s (1� s)

�
+
p
s (1� s)I1

�
2n
p
s (1� s)

��
(15)

Notice that since r > s; s (1� s) > r (1� r) and I1 is an increasing function, the
second term in (15) is greater than the second term in (15). A su¢ cient condition
for the �rst term in (15) to be greater than the �rst term in (15) is that

ln
�

r
1�s

�
2
�p

s (1� s)�
p
r (1� r)

� < n
This last inequality comes from the fact that I0 (x) =I0 (y) > ex�y (see Joshi and
Bissu, 1991).

Remark 1 The lower bound on n in the proposition is not too stringent. For in-
stance, if r = 3

4 and s =
2
3 then n � 11 is su¢ cient.

The proposition carries with it a surprising implication: policies designed to raise
turnout can be harmful purely on informational grounds. The problem of low turnout
in elections has led over 40 countries, including Australia, Belgium, Italy as well as
most of South America, to adopt mandatory voting laws. Some countries, such
as Australia, impose �nes to ensure compliance. Others, such as Greece, make it
di¢ cult for non-voting citizens to obtain (and renew) driver�s licenses and passports.
In Bolivia, the sanctions are even more extreme� abstaining can result in the freezing
of a citizen�s bank account. Proposition 7 suggests that, if successful in achieving full
turnout, such schemes are welfare reducing� even if one ignores voting costs entirely.

But what is the optimal scheme? In general, the planner will trade o¤ voting
costs of increased participation against informational bene�ts. The exact resolution
of this trade-o¤ will, of course, depend on the cost distribution, and o¤ers little new
insight. Obviously, the planner will simply equate the marginal bene�t of additional
participation with the marginal voting cost.

Instead, we consider a frictionless environment where voting costs are entirely
absent, and derive the optimal scheme. First, consider a purely voluntary scheme.
When n is large, this scheme has a unique equilibrium as the following proposition
shows:
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Proposition 8 In large elections under voluntary voting with zero costs, there is a
unique equilibrium: (i) all b types vote; (ii) a types vote with probability pa; and (iii)
all those who vote, vote sincerely. The sequence pa (n) satis�es

lim pa (n) =

�p
1� r +

p
s

p
r +

p
1� s

�2
(16)

Proof. It is routine to verify that there is an equilibrium in which all b types vote
and a types mix between voting and staying at home and so Ua the payo¤of an a type
must be zero. The limit of the mixing probability can be found by the approximation
formulae for the pivotal probabilities.

We now argue that there is only one equilibrium when n is large. First, note that
Lemma 10 continues to hold even with zero costs so that in any equilibrium, voting
must be sincere. Thus it remains to show that equilibrium participation rates are
uniquely determined. The equilibrium participation rates pa and pb cannot both be
strictly less than one because then the payo¤s of both types, Ua and Ub, must be
zero. But Lemmas 4 and 5 together imply that this is impossible. Hence at least
one of the two types must participate fully, that is, either pa = 1 or pb = 1: Since, in
equilibrium we must have pb � pa (see Lemma 1), it must be that pb = 1: Finally, in
large elections, we know from the proof of Lemma 11 that

@Ua
@pa

< 0

and so there is a unique pa such that Ua (pa; 1) = 0:

While it is nice to know that equilibrium multiplicity is not a problem under
the voluntary scheme, Proposition 8 has deeper welfare implications. Absent voting
costs, majority-rule voting is a common interest game and so there exists an e¢ -
cient equilibrium (McLennan, 1998). Since there is a unique equilibrium under the
voluntary scheme, it then follows that it must be e¢ cient. That is:

Proposition 9 In large elections with zero voting costs, voluntary voting is optimal.

Proposition 9 implies, among other things, that schemes designed to raise turnout
o¤er no informational bene�t. At best, such schemes are equivalent to voluntary
voting. Is voluntary voting is welfare equivalent to compulsory voting when costs are
zero?10 After all, both schemes lead to full information aggregation in the limit. And
one might conjecture that the equilibrium under voluntary voting with private costs
is merely a puri�cation of the mixed equilibrium under compulsory voting.11

This is not the case, however, since pivotality considerations in the two schemes
di¤er. Under voluntary voting, the behavior of a types is determined by a comparison
10 In practice, a voter may show up to the polls while still abstaining by handing in a blank ballot.

This, however, is not what proponents of compulsory voting would view as an ideal situation. In our
setting, we thus equate compulsory voting with voting for one of the two candidates.
11Equilibrium of the voluntary voting model with small private costs is, of course, a puri�cation

of the mixed equilibrium of the voluntary voting model with zero costs.
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of the payo¤s from voting for A versus abstaining� that is, by the PivA events alone.
Under compulsory voting, the behavior of a types is determined by a comparison of
the payo¤s from voting for A versus voting for B� that is, by both the PivA events
and the PivB events. We now turn to a more detailed comparison.

In Section 3 we showed that when voting is compulsory, it is not an equilibrium
for all voters to vote sincerely. While b type voters vote sincerely in equilibrium, a
type voters mix between voting for A and voting for B: The mixing probability is
determined by the condition that for a types, the likelihood ratio of � to � conditional
on being pivotal is one. This is equivalent to requiring that

U (A; a) � q (� j a) Pr [PivA j �]� q (� j a) Pr [PivA j �]
= q (� j a) Pr [PivB j �]� q (� j a) Pr [PivB j �] � U (B; a) (17)

That is, the returns to voting for A are equal to the returns from voting for B: As we
show in the next proposition, for large elections, there is a unique mixing probability
satisfying equation (17).

Proposition 10 In large elections under compulsory voting, there is a unique equi-
librium: (i) all b types vote for B; (ii) all a types vote for A with probability � < 1.
The sequence � (n) satis�es

lim� (n) =
1

1 + r � s (18)

Again, we omit a detailed proof. The limit of the mixing probability � for a
type voters is the condition that a types are indi¤erent between voting for A and
voting for B: Since the exponential terms dominate in the limit, the condition that
U (A; a) = U (B; a) requires that

e�(
p
�A�

p
�B)

2

= e�(
p
�A�

p
�B)

2

and this is easily veri�ed to be equivalent to

� =
1

1 + r � s

It may be readily veri�ed that the expected vote shares in each state under the
compulsory scheme are not equal to those under the voluntary scheme. However, the
uniqueness result contained in Proposition 10 implies that it is e¢ cient in the class
of all schemes involving full turnout. It remains to compare welfare under the two
schemes directly. The social welfare W (�) in state � can be written as:

W (�) = 1� e�(�A+�B)
 
1
2I0 (2

p
�A�B) +

1X
m=1

�q
�B
�A

�m
Im (2

p
�A�B)

!
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where,

Im (z) =

1X
k=m

�
z
2

�k�m
(k �m)!

�
z
2

�k
k!

is associated with the event that A wins by m votes. Since for all m, the leading term
of Im (z) is ezp

2�z
(Abramowitz and Stegun, 1965, p. 377), then, under the assumption

that �B < �A, we obtain the approximation

W (�) � 1� e�(
p
�A�

p
�B)

2

0@1
2 +

q
�B
�A

1�
q

�B
�A

1A 1p
4�
p
�A�B

(19)

The welfare in state � can be written similarly by substituting � for � and exchanging
A and B:We are now in a position to show:

Proposition 11 In large elections with zero costs, voluntary voting is welfare supe-
rior to compulsory voting.

Proof. We prove that welfare in state � is higher under voluntary voting than under
compulsory voting. The proof for state � is analogous.

In the limit, under voluntary voting, �A = nrpa and �B = n (1� r) whereas, in
the limit, under compulsory voting, �A = nr� and �B = n (1� r�) :

From (19), it follows that in large elections, a welfare comparison rests only on
the exponential term. Speci�cally, we will show that the term

p
�A �

p
�B is higher

under voluntary voting than under compulsory voting; that is,

p
rpa �

p
1� r > pr��

p
1� r� (20)

Substituting from (18) and (16) the inequality in (20) can be rewritten as

p
r

p
s+

p
1� r

p
r +

p
1� s

�
p
1� r >

p
r �

p
1� sp

1 + r � s

and we will establish the inequality

p
r

p
s+

p
1� r

p
r +

p
1� s

�
p
1� r >

p
r �

p
1� s (21)

which is is stronger because r > s; and so 1 + r � s > 1.
The inequality in (21) may be rearranged as

p
r
p
s > r + s+

p
1� r

p
1� s� 1 (22)

Now when r = s; the two sides are equal and it may be veri�ed that for �xed s, the
derivative of the left-hand side of (22) with respect to r is greater than the derivative
of the right-hand side. This completes the proof.
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To gain some intuition for the result, notice that under the compulsory scheme,
players with a signals earn negative expected payo¤s in equilibrium. They would
rather not vote at all. These players earn zero payo¤s in equilibrium under the vol-
untary scheme, so this clearly represents an improvement. Of course, it is possible
that the sacri�ce of the a types under the compulsory scheme is more than compen-
sated by welfare gains to the b types. This turns out not to be the case, but requires
the formal machinery of Proposition 11 to show.

8 Conclusions

Rational choice models of voting behavior have long been criticized on behavioral
grounds. They require voters to employ mixed strategies, they imply that swing
voters would prefer not to come to the polls, and when voting is costly, they beg the
question as to why anyone should bother to vote at all.

Many of these problems disappear if one amends the standard model to allow
for realistic features such as the possibility of abstention and heterogeneous costs of
going to the polls. With these additions, there is no longer a con�ict between sincere
and strategic voting and swing voters willingly participate. Moreover, voting in large
elections nearly always produces the �right�outcome.

The model allows for comparisons of various policies designed to increase turnout
with a purely voluntary scheme. The common intuition is that more turnout pro-
duces better outcomes. We show that this intuition is incorrect� full participation is
never optimal even when voting is costless. Moreover, when voting costs are not an
important welfare consideration, an even sharper result emerges: laissez-faire is best.
A social planner cannot improve over a purely voluntary voting scheme.

A Appendix: Equilibrium

Proof of Proposition 2. It is useful to rewrite IRa and IRb in terms of threshold
costs rather than participation probabilities. Let Va (ca; cb) denote the payo¤ to
a voter with signal a from voting for A when the two threshold costs are ca =
F�1 (pa) and cb = F�1 (pb); that is, Va (ca; cb) � Ua (F (ca) ; F (cb)) : Similarly, let
Vb (ca; cb) � Ub (F (ca) ; F (cb)). We will show that there exist (ca; cb) 2 (0; 1)2 such
that Va (ca; cb) = ca and Vb (ca; cb) = cb:

The function V = (Va; Vb) : [0; 1]
2 ! [�1; 1]2 maps a pair of threshold costs to a

pair of payo¤s from voting sincerely. Note that payo¤s may be negative.
Consider the function V + : [0; 1]2 ! [0; 1]2 de�ned by

V +a (ca; cb) = max f0; Va (ca; cb)g
V +b (ca; cb) = max f0; Vb (ca; cb)g

Since V is a continuous function, V + is also continuous and so by Brouwer�s Theorem
V + has a �xed point, say (c�a; c

�
b) 2 [0; 1]

2 :
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We argue that c�a and c
�
b are strictly positive. Suppose that c

�
a = 0: Then p�a =

F (c�a) is also zero and so there are no a types who vote. Consider an individual who
receives a signal of a: The only events in which a vote for A is pivotal is if either (i)
no b types show up to vote; or (ii) a single b type shows up. Thus

Pr [PivA j �] = 1
2e
�n(1�r)p�b (1 + n (1� r) p�b)

Pr [PivA j �] = 1
2e
�nsp�b (1 + nsp�b)

where p�b = F (c�b) : We claim that Pr [PivA j �] > Pr [PivA j �] : This follows from
the fact that the function e�x (1 + x) is strictly decreasing for x > 0 and s > 1 � r:
Hence, if p�a = 0

q (� j a) Pr [PivA j �]� q (� j a) Pr [PivA j �] > 0

since q (� j a) > 1
2 : Since c

�
a = 0, this is equivalent to

V +a (c
�
a; c

�
b) > c

�
a

contradicting the assumption that (c�a; c
�
b) was a �xed point. Thus c

�
a > 0:

A similar argument shows that c�b > 0:
Since both c�a and c

�
b are strictly positive, we have that

V + (c�a; c
�
b) = V (c

�
a; c

�
b) = (c

�
a; c

�
b)

Thus (c�a; c
�
b) is also a �xed point of V and so solves IRa and IRb.

Next, notice that at any point (1; pb)

q (� j a) Pr [PivA j �]� q (� j a) Pr [PivA j �] < 1

Thus if (c�a; c
�
b) is a �xed point of V then we also have that both c�a and c

�
b are also

less than one.

Proof of Lemma 1. We claim that if pa � pb, then Ua (pa; pb) < Ub (pa; pb) :
A rearrangement of the relevant expressions shows that Ua (pa; pb) < Ub (pa; pb) is
equivalent to

(q (� j a) + q (� j b)) Pr [T j �] + q (� j a) Pr [T�1 j �] + q (� j b) Pr [T+1 j �] (23)

being less than

(q (� j b) + q (� j a)) Pr [T j �] + q (� j a) Pr [T�1 j �] + q (� j b) Pr [T+1 j �] (24)

We will show that each term in (23) is less than the corresponding term in (24).
With sincere voting, �A = nrpa; �B = n (1� r) pb; �A = n (1� s) pa and �B =

nspb:
First, since r > s > 1

2 ; we have �A�B < �A�B and since pa � pb; �A + �B �
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�A + �B: Thus,

Pr [T j �] = e��A��B
1X
k=0

�kA
k!

�kB
k!

< e��A��B
1X
k=0

�kA
k!

�kB
k!

= Pr [T j �]

It is also easily veri�ed that q (� j a) + q (� j b) < q (� j b) + q (� j a) :
Second, since r > s > 1

2 ; we have for all k � 1; r�
k�1
A �kB < (1� s) �

k�1
A �kB: Thus,

q (� j a) Pr [T�1 j �] = e��A��B
r

r + 1� s

1X
k=1

�k�1A

(k � 1)!
�kB
k!

< e��A��B
1� s

r + 1� s

1X
k=1

�k�1A

(k � 1)!
�kB
k!

= q (� j a) Pr [T�1 j �]

Third, a similar argument establishes that

q (� j b) Pr [T+1 j �] < q (� j b) Pr [T+1 j �]

Combining these three facts establishes that (23) is less than (24)
This means that if p�a � p�b ; then (p

�
a; p

�
b) cannot satisfy IRa and IRb. Thus

p�a < p
�
b :

Proof of Lemma 2. Consider the functions

G (x; y) = I0 (z) +
q

y
xI1 (z)

H (x; y) = I0 (z) +
q

x
y I1 (z)

where z = 2
p
xy: Note that inequality (6) is equivalent to

G (�A; �B)

H (�A; �B)
>
G (�A; �B)

H (�A; �B)
(25)

We will argue that G=H is decreasing in x and increasing in y: Since �A > �A
and �B < �B; this will establish the inequality (25).
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It may be veri�ed that

HGx �GHx =
�
I0 (z) +

q
x
y I1 (z)

��
y
xI0 (z) +

�
1� 1

x

�q y
xI1 (z)

�
�
�
I0 (z) +

q
y
xI1 (z)

�2
= � 1

x

�
(y � x)

�
I1 (z)

2 � I0 (z)2
�
+
q

y
xI0 (z) I1 (z) + I1 (z)

2
�

= � 1
xg (x; y)

where
g (x; y) = (y � x)

�
I1 (z)

2 � I0 (z)2
�
+
q

y
xI0 (z) I1 (z) + I1 (z)

2

We claim that g (x; y) > 0; whenever x and y are positive. Note that for any y > 0;

lim
x!0

g (x; y) = 0

Some routine calculations show that

gx (x; y) =
�
I0 (z) +

q
y
xI1 (z)

�2
+
�
I0 (z)

2 � I1 (z)2
�
� 1

x
g (x; y)

Thus, if g (x; y) � 0; then gx (x; y) > 0 (recall that I0 (z) > I1 (z)). This implies that
for all x > 0, g (x; y) > 0 and so HGx �GHx < 0:

It may also be veri�ed that

HGy �GHy =
�
I0 (z) +

q
x
y I1 (z)

�2
�
�
I0 (z) +

q
y
xI1 (z)

��
x
y I0 (z) +

�
1� 1

y

�q
x
y I1 (z)

�
= 1

y

�
(x� y)

�
I1 (z)

2 � I0 (z)2
�
+
q

x
y I0 (z) I1 (z) + I1 (z)

2
�

= 1
yh (x; y)

where h (x; y) = g (y; x). The same reasoning now shows that so for all y > 0;
HGy �GHy > 0:

This completes the proof.

B Appendix: Large Elections

Proof of Lemma 3. Suppose to the contrary, that for some sequence, lim ca (n) >
0. In that case, the gross bene�ts (excluding the costs of voting) to voters with a
signals from voting must be positive; that is

lim (q (� j a) Pr [PivA j �]� q (� j a) Pr [PivA j �]) > 0

where it is understood that the probabilities depend on n.
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We know that along the given sequence, lim pa (n) > 0: This implies that lim�A (n) =
limnrpa (n) =1:

First, suppose that there is a subsequence along which lim
p
�A�B <1: In that

case,

Pr [PivA j �] = 1
2e
��A��B

�
I0 (2

p
�A�B) +

q
�B
�A
I1 (2

p
�A�B)

�
and since lim

�
e��A=

p
�A
�
= 0 and lim sup e��B

p
�B < 1; along any such subse-

quence,
limPr [PivA j �] = 0

Second, suppose that there is a subsequence along which lim
p
�A�B = 1: In

that case,

Pr [PivA j �] � 1
2

e�(�A+�B�2
p
�A�B)p

4�
p
�A�B

�
1 +

q
�B
�A

�
Notice that the denominator is unbounded while the numerator is always bounded.
Hence, along any such subsequence,

limPr [PivA j �] = 0

An identical argument applies for �A (n) and �B (n) : Therefore,

limPr [PivA j �] = 0

But this means that the gross bene�t of voting for A when the signal is a tends
to zero. This contradicts the assumption that lim ca (n) > 0:

Proof of Proposition 4. The result is a consequence of a series of lemmas.

Lemma 4 Suppose that there is a sequence of sincere voting equilibria such that
limnpa (n) = na < 1 and limnpb (n) = nb < 1: If rna � (1� r)nb; then Ub = 0
implies Ua > 0:

Proof. The condition that Ub = 0 is equivalent to

sPr [PivB j �] = (1� r) Pr [PivB j �]

whereas Ua > 0 is equivalent to

rPr [PivA j �] > (1� s) Pr [PivA j �]

We will argue that

rPr [PivA j �]
(1� s) Pr [PivA j �]

>
(1� r) Pr [PivB j �]
sPr [PivB j �]
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or equivalently,

rna (Pr [T j �] + Pr [T�1 j �])
(1� s)na (Pr [T j �] + Pr [T�1 j �])

>
(1� r)nb (Pr [T j �] + Pr [T+1 j �])
snb (Pr [T j �] + Pr [T+1 j �])

Now note that

rna Pr [T�1 j �] = (1� r)nb Pr [T+1 j �]

and
(1� s)na Pr [T�1 j �] = snb Pr [T+1 j �]

and the required inequality follows from the fact that rna � (1� r)nb and (1� s)na <
snb:

Lemma 5 Suppose that there is a sequence of sincere voting equilibria such that
limnpa (n) = na <1 and limnpb (n) = nb <1: If rna < (1� r)nb; then Ua > 0:

Proof. Consider the function

K (x; y) = e�x�y
�
xI0 (z) +

1
2zI1 (z)

�
where z = 2

p
xy:

Note that if �A = rna and �B = (1� r)nb; then

rna Pr [PivA j �] = 1
2�Ae

��A��B
�
I0 (2

p
�A�B) +

q
�B
�A
I1 (2

p
�A�B)

�
= 1

2K (�A; �B)

Similarly, if �A = (1� s)na and �B = snb; then

(1� s)na Pr [PivA j �] = 1
2G (�A; �B)

We will show that when x < y; K (x; y) is increasing in x and decreasing in y:
Observe that

Kx (x; y) = e�x�y
�
I0 (z) + xI

0
0 (z) zx +

1
2 (zI1 (z))

0 zx � xI0 (z)� 1
2zI1 (z)

�
= e�x�y

�
I0 (z) + xI1 (z) zx +

1
2zI0 (z) zx � xI0 (z)�

1
2zI1 (z)

�
= e�x�y (1 + y � x) I0 (z)
> 0

where we have used the fact that I 00 (z) = I1 (z) and (zI1 (z))
0 = zI0 (z) : Also,

xzx =
1
2z and

1
2zzx = y:
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Also,

Ky (x; y) = e�x�y
�
xI 00 (z) zy +

1
2 (zI1 (z))

0 zy � xI0 (z)� 1
2zI1 (z)

�
= e�x�y

�
xI1 (z) zy +

1
2zI0 (z) zy � xI0 (z)�

1
2zI1 (z)

�
= e�x�y

�
xzy � 1

2z
�
I1 (z)

< 0

where we have used the fact that, zyz = 2x and zy =
q

x
y < 1 and x <

1
2z:

Finally, notice that since rna < (1� r)nb

(1� s)na < rna < (1� r)nb < snb

which is the same as
�A < �A < �B < �B

and since Kx > 0 and Ky < 0 for x < y; we have

rPr [PivA j �]
(1� s) Pr [PivA j �]

=
K (�A; �B)

K (�A; �B)
> 1

and so
Ua =

r

1 + 1� s Pr [PivA j �]�
1� s

r + 1� s Pr [PivA j �] > 0

Lemma 6 In any sequence of sincere voting equilibria, either limnpa (n) = 1 or
limnpb (n) =1:

Proof. Lemma 3 then implies that both

limUa (pa (n) ; pb (n)) = 0 and limUb (pa (n) ; pb (n)) = 0

Suppose to the contrary that limnpa (n) < 1 and limnpb (n) < 1: But now
Lemmas 4 and 5 lead to a contradiction.

Our next lemma shows that in the limit, the participation rates are of the same
order of magnitude.

Lemma 7 In any sequence of sincere voting equilibria, (i) lim inf pa(n)pb(n)
> 0; and (ii)

lim inf pb(n)pa(n)
> 0:

Proof. To prove part (i), suppose to the contrary that lim inf pa(n)pb(n)
= 0: Lemma 6

implies that lim inf npb (n) =1.
Consider the probability of outcome (k; l) in state �

Pr [(k; l) j �] = e�nrpa (nrpa)
k

k!
e�n(1�r)pb

(n (1� r) pb)l

l!
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and the corresponding probability Pr [(k; l) j �] ; which is obtained by substituting
(1� s) for r in the expression above.

The likelihood ratio

Pr [(k; l) j �]
Pr [(k; l) j �] = e

npb(r+s�1)
�
1� pa

pb

�
� r

(1� s)k
(1� r)l

s

Since along some sequence, papb ! 0 and npb !1

e
npb(r+s�1)

�
1� pa

pb

�
!1

Moreover, in all events in the set PivB; jk � lj � 1.
Thus, there exists an n0 such that for all n � n0

Pr [PivB j �]
Pr [PivB j �]

>
q (� j b)
q (� j b)

But this contradicts the fact that for all n; the participation thresholds are posi-
tive, that is

q (� j b) Pr [PivB j �]� q (� j b) Pr [PivB j �] = F�1 (pb) > 0

Part (ii) is, of course, an immediate consequence of Lemma 1.

C Appendix: Uniqueness

The purpose of this appendix is to provide a proof of Proposition 6.
First, we show that in any equilibrium, voting behavior must be sincere. This

now means that all equilibria must be of the kind we have studied� and the only
way there could be multiple equilibria is that there are multiple solutions to the
equilibrium participation rates. We complete the proof by showing that when n is
large, there can be only one pair of equilibrium participation rates.

To show that all equilibria involve sincere voting, we �rst rule out equilibria in
which voters with a signals and voters with b signals both vote against their own
signals with positive probability.

Lemma 8 In any equilibrium, at least one type votes sincerely.

Proof. Suppose to the contrary that neither type votes sincerely.
Let U (A; a) denote the gross payo¤ (not including costs of voting) of voting for

A to a voter with an a signal. Similarly, de�ne U (B; a) ; U (A; b) and U (B; b) :
Then we have that

U (A; a) > U (A; b) � U (B; b)
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where the �rst inequality follows from the fact that all else being equal, a vote of A
is more valuable with signal a than with with signal b: The second inequality follows
from the fact that, by assumption, b types vote for A with positive probability.

On the other hand, similar reasoning leads to

U (B; b) > U (B; a) � U (A; a)

and the two inequalities contradict each other. Hence it cannot be that neither type
votes sincerely.

Lemma 9 There cannot be an equilibrium in which both types always vote for the
same candidate.

Proof. Suppose that all voters vote for A (say). Then we have that

U (A; a) > U (A; b) � U (B; b) > U (B; a)

Moreover, since b types participate,

U (A; b) = q (� j b) Pr [PivA j �]� q (� j b) Pr [PivA j �]
= q (� j b) 12e

�n(rpa+(1�r)pb) � q (� j b) 12e
�n((1�s)pa+spb)

� 0

since the only circumstances in which a vote for A is pivotal is if no one else shows
up. Since r > 1� s; a necessary condition for this to hold is that rpa + (1� r) pb <
(1� s) pa + spb:

We claim that
U (B; b)� U (A; b) > 0

which is equivalent to

q (� j b) (Pr [PivA j �] + Pr [PivB j �]) > q (� j b) (Pr [PivA j �] + Pr [PivB j �])

Notice that

Pr [PivA j �] + Pr [PivB j �] = e�n((1�s)pa+spb)
�
1 + 1

2n ((1� s) pa + spb)
�

Pr [PivA j �] + Pr [PivB j �] = e�n(rpa+(1�r)pb)
�
1 + 1

2n (rpa + (1� r) pb)
�

and the �rst term is greater since the function e�x
�
1 + 1

2x
�
is decreasing for x > 0

and rpa + (1� r) pb < (1� s) pa + spb:
Thus,

U (B; b)� U (A; b) > 0

which contradicts the assumption that b types vote for A:

Lemma 10 In any equilibrium, voting is sincere.
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Proof. Lemmas 8 and 9 imply that any equilibrium must have the following form:
one type votes sincerely and the other type votes sincerely with positive probability.

First, suppose that a types vote sincerely and b types vote sincerely with proba-
bility � < 1: In this case,

�A = n (rpa + (1� r) (1� �) pb) ; �B = n (1� r)�pb
�A = n ((1� s) pa + s (1� �) pb) ; �B = ns�pb

(26)

Since b types are indi¤erent between voting for A and voting for B; we have

0 � U (B; b) = U (A; b) < U (A; a)

where the inequality follows from the fact that, all else being equal, the payo¤ from
voting for A when the signal is a is higher than when the signal is b: Thus the
gross payo¤ of b types is lower than the gross payo¤ of a types and so pb < pa: If
pb < pa; then using (26), it is easy to verify that �A > �A and �B < �B: Hence
voting behavior in any such equilibrium satis�es the conditions of the Likelihood
Ratio Lemma (Lemma 2). The gross payo¤ to a b type from voting is

U (B; b) = q (� j b) Pr [PivB j �]� q (� j b) Pr [PivB j �] � 0

where the pivot probabilities are computed using the expected vote totals in (26).
The inequality U (B; b) � 0 may be rewritten as

Pr [PivB j �]
Pr [PivB j �]

� q (� j b)
q (� j b)

Lemmas 2 then implies that,

Pr [PivA j �]
Pr [PivA j �]

>
q (� j b)
q (� j b)

which is equivalent to

U (A; b) = q (� j b) Pr [PivA j �]� q (� j b) Pr [PivA j �] < 0

which is a contradiction.
Second, suppose that b types vote sincerely and a types vote sincerely with prob-

ability � < 1: In this case,

�A = nr�pa; �B = n (r (1� �) pa + (1� r) pb)
�A = n (1� s)�pa; �B = n ((1� s) (1� �) pa + spb)

(27)

An analogous argument shows that now pb > pa and again the conditions of Lemma
2 are satis�ed. As above, this implies that a types cannot be indi¤erent.

We have thus shown that all equilibria must involve sincere voting. Note that
this does not require n to be large.
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It remains to show that given sincere voting, there is a unique set of participation
rates� that is, there is a unique solution (p�a; p

�
b) to IRa and IRb. As we show next,

this is also true in large elections.12

Lemma 11 In large elections, there is a unique solution to the cost threshold equa-
tions IRa and IRb.

Proof. Equilibrium cost thresholds are determined by the equations

Ua (pa; pb) � q (� j a) Pr [PivA j �]� q (� j a) Pr [PivA j �] = F�1 (pa) (IRa)

Ub (pa; pb) � q (� j b) Pr [PivB j �]� q (� j b) Pr [PivB j �] = F�1 (pb) (IRb)

We will show that when n is large, at any intersection of the two, the curve determined
by IRa is steeper than that determined by IRb, that is,

�
�
@Ua
@pa

�
�
F�1 (pa)

�0�� @Ua
@pb

> �@Ub
@pa

�
�
@Ub
@pb

�
�
F�1 (pb)

�0�
(28)

The calculation of the partial derivatives is facilitated by using the following
simple fact. If we write,

Pr [(l; k) j �] = e�nrpa (nrpa)
l

l!
e�n(1�r)pb

(n (1� r) pb)k

k!

as the probability of outcome (l; k) in state �; then

@ Pr [(l; k) j �]
@pa

= nrPr [(l � 1; k) j �]� nrPr [(l; k) j �]

@ Pr [(l; k) j �]
@pb

= n (1� r) Pr [(l; k � 1) j �]� n (1� r) Pr [(l; k) j �]

Similar expressions obtain for the partial derivatives of Pr [(l; k) j �] :
Since the probability of a pivotal term PivC where C = A;B is just a sum of

terms of the form Pr [(l; k) j �] ; we obtain

@ Pr [PivC j �]
@pa

= nrPr [PivC � (1; 0) j �]� nrPr [PivC j �]

@ Pr [PivC j �]
@pb

= n (1� r) Pr [PivC � (0; 1) j �]� n (1� r) Pr [PivC j �]

Again, similar expressions obtain for the partial derivatives of Pr [PivC j �] where
C = A;B:

Myerson (2000) has shown that when the expected number of voters is large, the

12This result does not hold in a corresponding model of costly voting with a �xed population.
Ghosal and Lockwood (2007) provide an example with the majority rule in which there are multiple
cost thresholds and hence, multiple equilibria.
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probabilities of the �o¤set�events in state � are

Pr [PivC � (1; 0) j �] � Pr [PivC j �]x
1
2

Pr [PivC � (0; 1) j �] � Pr [PivC j �]x�
1
2

where
x =

1� r
r

pb
pa

Similarly, the probabilities of the o¤set events in state � are

Pr [PivC � (1; 0) j �] � Pr [PivC j �] y
1
2

Pr [PivC � (0; 1) j �] � Pr [PivC j �] y�
1
2

where
y =

s

1� s
pb
pa

Using Myerson�s o¤set formulae it follows that

@Ua
@pa

� nq (� j a) rPr [PivA j �] (x
1
2 � 1)� nq (� j a) (1� s) Pr [PivA j �] (y

1
2 � 1)

@Ua
@pb

� nq (� j a) (1� r) Pr [PivA j �] (x�
1
2 � 1)� nq (� j a) sPr [PivA j �] (y�

1
2 � 1)

and similarly,

@Ub
@pa

� nq (� j b) (1� s) Pr [PivB j �] (y
1
2 � 1)� nq (� j b) rPr [PivB j �] (x

1
2 � 1)

@Ub
@pb

� nq (� j b) sPr [PivB j �] (y�
1
2 � 1)� nq (� j b) (1� r) Pr [PivB j �] (x�

1
2 � 1)

We have argued that when n is large, any point of intersection of IRa and IRb,
say (pa; pb), results in e¢ cient electoral outcomes� A wins in state � and B wins in
state �: This requires that (pa; pb) satisfy

1� r
r

pb
pa
< 1 and

s

1� s
pb
pa
> 1 (29)

and by de�nition this is the same as

x < 1 and y > 1 (30)

From this it follows that at any point (pa; pb) satisfying (29),

@Ua
@pa

< 0 and
@Ua
@pb

> 0
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and similarly,
@Ub
@pa

> 0 and
@Ub
@pb

< 0

Thus at any (pa; pb) satisfying (29), the curves determined by IRa and IRb are
both positively sloped.

Since
�
F�1 (pa)

�0 and �F�1 (pb)�0 are both positive, in order to establish the
inequality in (28), it is su¢ cient to show that�

�@Ua
@pa

�
� @Ua
@pb

>
@Ub
@pa

�
�
�@Ub
@pb

�
which is equivalent to

q (� j a) rPr [PivA j �] (1� x
1
2 ) + q (� j a) (1� s) Pr [PivA j �] (y

1
2 � 1)

q (� j a) (1� r) Pr [PivA j �] (x�
1
2 � 1) + q (� j a) sPr [PivA j �] (1� y�

1
2 )

>
q (� j b) rPr [PivB j �] (1� x

1
2 ) + q (� j b) (1� s) Pr [PivB j �] (y

1
2 � 1)

q (� j b) (1� r) Pr [PivB j �] (x�
1
2 � 1) + q (� j b) sPr [PivB j �] (1� y�

1
2 )

Using
q (� j a) = r

r + (1� s) and q (� j b) =
s

s+ (1� r)
and writing

LA =
Pr [PivA j �]
Pr [PivA j �]

and LB =
Pr [PivB j �]
Pr [PivB j �]

as the two likelihood ratios, the inequality above is the same as

(r)2 (1� x 12 ) + (1� s)2 (y 12 � 1)LA
r (1� r) (x� 1

2 � 1) + s (1� s) (1� y� 1
2 )LA

>
r (1� r) (1� x 12 ) + s (1� s) (y 12 � 1)LB
(1� r)2 (x� 1

2 � 1) + s(1� y� 1
2 )LB

Cross-multiplying and cancelling terms, further reduces the inequality to�
(1� r) (1� s)

rs
(x�

1
2 � 1)(y

1
2 � 1)� (1� x

1
2 )(1� y�

1
2 )

�
� LA

>

�
(1� r) (1� s)

rs
(x�

1
2 � 1)(y

1
2 � 1)� (1� x

1
2 )(1� y�

1
2 )

�
� rs

(1� r) (1� s) � LB
(31)

We claim that for all (pa; pb) satisfying (29),

(1� r) (1� s)
rs

(x�
1
2 � 1)(y

1
2 � 1)� (1� x

1
2 )(1� y�

1
2 ) < 0 (32)
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To see this, note that by de�nition,

y =
s

1� s
pb
pa

=
rs

(1� r) (1� s)
1� r
r

pb
pa

=
rs

(1� r) (1� s)x

= Rx

where R = rs
(1�r)(1�s) : Substituting y = Rx we obtain

R(x�
1
2�1)(y

1
2�1)�(1�x

1
2 )(1�y�

1
2 ) = R�1(x�

1
2�1)(R

1
2x

1
2�1)�(1�x

1
2 )(1�R�

1
2x�

1
2 )

Now consider the function

� (x) = R�1(x�
1
2 � 1)(R

1
2x

1
2 � 1)� (1� x

1
2 )(1�R�

1
2x�

1
2 )

Since x < 1 < y = Rx; we have R�1 < x < 1: Notice that � (1) = 0 = �(R�1): It is
routine to verify that � is convex and so � (x) < 0 for all x 2 (R�1; 1): Thus we have
established (32).

Now because of (32), the inequality in (31) reduces to

Pr [PivA j �]
Pr [PivA j �]

< R� Pr [PivB j �]
Pr [PivB j �]

(33)

Finally, notice that IRa and IRb imply, respectively, that

r

1� s =
q (� j a)
q (� j a) >

Pr [PivA j �]
Pr [PivA j �]

and
Pr [PivB j �]
Pr [PivB j �]

>
q (� j b)
q (� j b) =

1� r
s

and this immediately implies (33), thereby completing the proof that at any point of
intersection of IRa and IRb, the slope of IRa is greater than the slope of IRb. This
means that the curves cannot intersect more than once.
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