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Abstract 
The paper studies the effect of “boundary spanning inventors” – inventors that cross 
organizational boundaries and bridge between scientific and technology communities 
–  as a mechanism through which firms connect to and appropriate returns from 
science. We examine the case of IMEC, a world leading research institute in the area 
of nano-technology, with a mission to bridge the gap between fundamental research at 
universities and R&D in the industry. We find strong evidence that linking to IMEC 
has provided partner firms with tangible benefits such as more valuable technology 
outcomes that are developed faster by these partner firms. Boundary spanning 
inventors increase the chance of developing high quality technologies faster, but need 
to be embedded within a broader partner relationship for this network to produce 
tangible results.  
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1. Introduction 

An important and recurrent concern in economics and management has been to 

understand to what extent scientific knowledge influences technological progress and 

ultimately economic growth. More recent research suggests that the links to basic 

research and scientific knowledge by industrial firms have dramatically increased in 

the last decade and that firms today manifest a diversity of links.   In spite of these 

growing connections to science our understanding of the variety and distribution of 

these links and how they affect industrial innovation remains unclear. 

In this paper we examine the effect of links to science on firm’s applied 

research productivity. We contribute to the literature in several ways. First, we 

examine several potential effects of science links, ranging from effects on the value 

and quality of technologies developed over building cumulativeness of research to 

establishing technology lead time.   Second, we examine various linking mechanisms 

and their possible complementarities.   Beyond joining of cooperative programs, we 

also look at the mobility of boundary spanning inventors.  Third, while controlling for 

both inventor and organizational level effects, we examine the effects of links to 

science at the invention level. Most research has used a knowledge production 

function at the organization level. However, such an approach aggregates many of the 

effects and, we believe, loses some of the important effects of science at the invention 

level. Firms that actively link with science will have a wide portfolio of innovative 

projects.  It is important to examine the effect of the science link on the projects that 

directly lead to commercial applications and are comparable to the projects of firms 

that have no direct link to science.  

The links to science that we examine focus on the links through an 

intermediary research organization.  We study a program set up by IMEC, a world 
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class research organization in micro-electronics and semiconductors with the 

expressed objective to bridge the gap between fundamental research done at 

universities and R&D in the industry. IMEC runs an industrial partner program where 

firms can sign up to specific research programs in their area of interest. Partners send 

researchers to participate in the research program at IMEC where they interact with 

researchers of IMEC and other partners involved in the program. However, the 

researchers formally remain part of their original organization and only physically 

move between locations to interact with science and engage in applied research. 

IMEC negotiates an elaborate IP agreement with its partners.  This allows us to track 

the effects of affiliation to this the program as well as the actual mobility of people 

and ideas, through patent information.  

The analysis involves comparing patents at different levels.  Patents of firms 

that are affiliated with IMEC are compared to patents of firms not involved with such 

an intermediary research organization.  This allows us to trace the effect of affiliation 

to an intermediary research organization.  In addition, we compare patents of 

boundary spanning inventors of affiliated firms that have been participating in 

research programs at the intermediary research organization versus patents of 

inventors who did not participate is such a program.  This allows us to trace the effect 

of cross-institutional mobility of researchers. 

We find that firms linked to science and applied research in semiconductors 

through IMEC and use boundary spanning inventors develop high quality innovations 

in the technology domain where IMEC operates. Partners continue to build internally 

on these technologies and cite IMEC related technologies faster, improving 

appropriation of returns in this fast paced environment. Being a partner of IMEC is 

important for developing higher quality inventions and clearly affects the 
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appropriation strategy of these firms which use their inventors’ experience and the 

technologies they created as a bridge to the next generation of commercial 

technologies. Boundary spanning inventors are an important link when used in 

combination with affiliation.  The inventors visiting the research center seem to play a 

key role in timely anticipating future technology roadmaps and reducing lead time in 

developing these future commercial technologies. 

In the following section we discuss the literature on industry science links. Section 

3 develops our hypotheses, while Section 4 discusses the empirical setting of IMEC. 

Section 5 elaborates on our data development and methods.  Section 6 presents our 

results, while Section 7 concludes with some caveats and directions for further 

research. 

 

2. Literature Review 

The interrelation between science and firm-level innovation outcomes is covered in a 

diverse literature in Economics and Management.  While the economics literature 

mainly explores the effects of science on innovative performance, it provides little 

explanation about the process through which science affects innovation.  The 

management literature has tried to open the black box inside organizations on how 

science links effectively translate into improved (innovative) performance.  

 

Any explanation of why firms engage with science needs to argue that 

ultimately science enhances firms’ innovative performance. Several explanations as to 

the exact mechanisms for enhancing applied research productivity have been 

suggested (Nelson; 1959; Evenson and Kislev, 1976; Cassiman, Perez-Castrillo and 

Veugelers, 2002).  As science provides a codified form of problem-solving, it 
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increases the efficiency of private research (Arrow, 1962).  In addition, science serves 

as a map for technological landscapes guiding private research in the direction of 

most promising technological venues avoiding thereby wasteful experimentation 

(Fleming and Sorenson, 2004). Probably the most discussed argument of how actively 

engaging in science might increase applied research productivity is the fact that this 

link to science leads to a better identification, absorption and integration of external 

(public) knowledge (Cohen and Levinthal, 1989; Gambardella, 1995; Cockburn and 

Henderson, 1998; Cassiman and Veugelers, 2006). Faster identification, absorption 

and integration of external knowledge in turn leads to increased productivity of the 

applied research process, resulting faster into new technologies (Fabrizio, 2009; 

Cassiman et al., 2008).   

Scientific curiosity can create diversity in approaches and improve innovation 

outcomes (Page, 2007).  A better and more fundamental understanding of the 

technology landscape encourages non-local search for improving technologies as 

opposed to local search, leading to more diverse research projects being explored. 

More basic knowledge can simultaneously fertilize different research projects. At the 

same time, scientifically active firms can be expected to generate “unexpected” 

outcomes, which in turn improves the productivity of applied R&D and as a 

consequence the productivity of the innovation process (Sobrero and Roberts, 2001; 

Cassiman and Valentini, 2009; Aghion et al., 2009).  

 Finally, rather than affecting the output of the innovation process, Stern (2004) 

argues that science active firms might affect the inputs of the innovation process. By 

setting up a science friendly environment, the firm attracts researchers willing to 

accept a lower salary in return for the freedom to publish. These researchers are 

twofold valued: they do not only imply important labor costs reductions for the firm, 
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but also they constitute the “bridge” with the scientific or academic world.  Scientific 

advances and technological advances are driven by different selection logics and 

developed in different institutional environments (Gittelman and Kogut, 2003). 

Therefore, crossing organizational boundaries seems an important requirement to 

access good scientific knowledge. Mobile inventors or inventors that can link to 

science are probably the most efficient bridge between these two environments. 

However, little work has explicitly examined this boundary spanning role of these 

inventors bridging scientific and technology communities (Breschi and Catalini, 

2010). 

 

Mostly focused at the firm-level of analysis, the empirical literature has taken 

a stab at assessing the impact of science links on firm performance.  In spite of the 

many paybacks to be anticipated, the adoption of science remains limited to a 

restricted set of firms, and there is a wide heterogeneity in effects from science.  Most 

empirical evidence shows that adoption of science is indeed not costless.  It is highly 

conditional on absorptive capacity (Cohen and Levinthal, 1989; Kamien and Zang, 

2000) and adoption of new organizational practices (Gambardella, 1995; Cockburn et 

al, 1999).  

Probably the largest group of empirical papers have estimated a patent 

production function examining the effect of partnerships with universities on firm 

performance (e.g. Audretsch and Stephan, 1996; Zucker et al 1998; Cockburn and 

Henderson, 1998; Brandstetter and Sakakibara, 1998). The eminence of cooperation 

with universities as industry science link mechanism is reminiscent of the importance 

of crossing institutional boundaries for effective knowledge transfers between 

scientific and technology communities (Kogut and Zander, 1992; Rosenkopf and 
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Nerkar, 2001). The empirical evidence from these studies support the complementary 

effect of cooperation on internal R&D (Adams, 2000), and find a positive effect on 

innovation productivity and sales (Belderbos et al, 2004; Belderbos et al, 2006).  

The work by Cockburn and Henderson (1998) has shown that also direct 

involvement into science matters. Using data on co-authorship of scientific papers for 

a sample of pharmaceutical firms, they show that firms connected to science through 

co-publications show a higher performance in drug discovery.  Also Cassiman, 

Veugelers and Zuniga (2008) find that firms with scientific (co-)publications generate 

more important “applied” patents.  Ties with academic star scientists, either through 

co-publications or board positions, are another industry science link found, especially 

in biotech, to lead to more technology (Henderson and Cockburn, 1996; Zucker et al, 

2002; Cockburn and Henderson, 1998); more “important” patents: i.e. international 

patents (Henderson and Cockburn, 1994); and higher average of quality adjusted 

patenting (Zucker and Darby, 2001; Zucker et al, 2002).   

 

At the invention (i.e. patent) level, mainly the effect of the citation of scientific 

literature or the involvement of an academic researcher has been examined. Patents 

with references to science are found to be more important applied technologies 

(Cassiman, Veugelers and Zuniga, 2008), and to generate more economic value for 

pharmaceutical and chemical patents, but not in other technical fields (Harhoff et al., 

2003). Fleming and Sorenson (2004) show that having a “scientific” reference matters 

for technological impact of patents but that the benefits of using science depend upon 

the difficulty of the inventive problem being addressed: science only appears as 

beneficial when researchers work with highly interdependent – or coupled – 

knowledge pieces, which makes probability of discovery more uncertain.  However, 
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no significant effect of scientific references is found to explain patent opposition in 

European patents (Harhoff and Reitzig, 2004). The involvement of an academic 

inventor in the invention team is found to lead to more valuable patents, which is in 

line with having a boundary spanning inventor on the team (Czarnitzki et al., 2008).  

 

At the inventor level, those inventors co-publishing with universities are found 

to generate patents that exploit more prominently (citations to) science, confirming 

their boundary spanning role.   These inventors also produce patents with shorter lags 

between existing inventions and new firm inventions in the pharmaceutical industry 

(Fabrizio, 2004).   More mobile researchers are found to have better access to 

resources and networks (Cañibano, Otamendi and Andujar, 2008) and consequently 

have a higher innovative performance (Hoisl, 2007; Palomeras, 2010).   Reminiscent 

of the importance of mobility of researchers as mechanism to transfer information 

across organizations, improved performance is also found for the receiver firm (Song, 

Almeida and Wu, 2003; Rosenkopf and Almeida, 2003; Singh, 2008), as well as for 

the sender firm (Corredoira and Rosenkopf, 2010; Oettl and Agrawal, 2008).   

 

While the firm level empirical analyses find a positive relation between 

scientific activity of the firm and innovation outcomes, these analyses pay little 

attention to the actual micro-level mechanisms that link scientific activity to 

innovation performance. At the same time the invention and inventor level analyses 

do not clearly specify and control for organization level connections of the firms and 

limit themselves to inventor networks without superimposing organizational 

structures that affect the incentives of these inventors to develop, communicate and 

appropriate returns to these scientific research activities. In what follows we 
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investigate which links matter and how by carefully specifying what we know in a 

particular case. Our analyses are probably most closely related to Ziedonis & Ziedonis 

(2005) where they examine the specific case of SEMATECH. Given the particular 

features of our research setting we are able to delve deeper into these links and their 

effects as we discuss below. 

 

3. The effects of Linking with Science:  our Predictions 

The literature provides ample evidence showing that firms with links to science on 

average might expect higher innovative performance. But unfortunately we still know 

little about how exactly science links affect firm performance and which 

organizational forms are important for this linking. How can firms take more 

advantage of scientific research in their applied research? How should they organize 

to take advantage of science?  

 

3.1. On mechanisms to link to science 

Based on the literature, we hypothesize that the spanning of organizational boundaries 

seems more effective to access good scientific knowledge and generate technological 

advances. Through the mobility of the right people the frictions in this knowledge 

transfer process across organizational boundaries can be minimized. Especially, 

because of the tacitness and complexity of know-how underlying leading edge 

research, researcher interaction and mobility does play an essential role.  We therefore 

expect links involving mobility of researchers, i.e. boundary spanning inventors, to 

make organizational boundary-crossing more effective.  We will distinguish between 

these pure boundary spanning inventor links relative to more structured organization 

level partner links. 
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3.2. On effects from science links 

Interactions between science and industry should stimulate the average quality of the 

applied technologies developed by interacting firms. In addition, we would expect 

firms to take advantage of knowledge flows that have been generated through linking 

across organizational boundaries with science by building on these knowledge flows 

through the internal development of new technologies.  This is particularly important 

for technologies that are cumulative in nature. Not only does the link to science allow 

the firms to develop better technologies, as argued, it also allows these firms to move 

faster in technology space and stake out important technologies that they and others 

might build on.  

As a consequence, effects from industry science links and boundary spanning 

inventors in particular should be reflected in the value and quality of the developed 

technologies by the firms generating inventions with high potential.  At the same time, 

they affect the cumulativeness of their research efforts, and, the speed at which these 

organizations move in technology space. Given the improved knowledge flows across 

organizational boundaries through boundary spanning inventors, we might also expect 

firms to build more and faster on the opportunities offered by these knowledge flows.  

 

4. Research Setting: nano-electronics and IMEC  

In this analysis we focus on the micro-electronics industry and analyze the effect of 

links with IMEC – the Interuniversity Microelectronics Center – as an intermediary 

between science and industry. We examine the effects of participating in its Industrial 

Affiliation Program (IIAP), which allows researchers from participating companies to 

conduct research at the IMEC laboratories. 
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4.1. Industry-science links in the micro-electronics industry 

The micro-electronics industry is an interesting environment for testing effects of 

links with science. First, academic research is often at the forefront of breakthroughs 

in nano-electronics, and for this reason companies are seeking to cooperate with 

universities and research institutes to tap into emerging scientific opportunities as 

soon as possible. Academics are at the forefront of discoveries within their field, but 

the challenge remains to bridge the large gap between the application-oriented needs 

of the industry and the results from scientific research performed at universities and 

research institutes.  

Second, the semiconductor business is a knowledge-intensive industry 

whereby leading-edge technological knowledge is mostly tacit in nature. Knowledge 

sharing via researcher interaction and mobility between firms and research 

organizations is shown to be the crucial mechanism to bridge this gap between 

scientific and technology communities (Meyer-Krahmer and Schmoch, 1998).  

Knowledge creation in the semiconductor business is furthermore characterized by 

cumulativeness (Hall and Ziedonis, 2001).  At the same time, time-to-market has 

increasingly become a major differentiator as a result of fierce competitive dynamics 

and the shortening of product-life-cycles.  In addition, patenting is a standard practice 

in this industry (Hall and Ziedonis, 2001) and as a result, patents provide a clear 

window on the technology and innovation activity in the industry.  

 

4.2. IMEC as industry-science link  

We conduct our study based on IMEC a world-leading independent research institute 

in the area of nano-electronics and nano-technology. In 1982, IMEC was founded by 

the Flemish government. Its mission was to bridge the gap between fundamental 
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research at universities and R&D in the industry. The centre was built on the 

academic reputation and prominence of the ESAT laboratory of the University of 

Leuven. The centre’s commitment to the scientific community is nicely illustrated by 

the close collaboration with world-class universities, by the numerous conference 

participations and publications by its researchers and by the presence of several 

doctoral researchers at its laboratories.1

At the same time, IMEC is closely linked with industry. The board of directors 

includes delegates of the industry who stipulate the centre’s strategic roadmap 

focused on pre-competitive application-oriented technologies three to ten years ahead 

of industrial needs. IMEC was able to attract top industry leaders such as Intel, 

Samsung, Texas instruments, Micron, NXP, Hynix, Elpida, Infineon, Panasonic, 

TSMC, Sony, Qualcomm and ST Microelectronics as partners. Together with IBM in 

Albany, IMEC in Leuven has become one of the two most flourishing centers for 

nano-electronic research. IMEC possesses a unique pool of competences in a diversity 

of technological fields. It possesses a rare combination of know how in chip design, 

packaging and production. Its unique business model aims at stimulating the mobility 

of researchers in order to facilitate cross-fertilization of ideas among all participating 

scientific and industrial researchers. 

   

 

4.3. IMEC Industrial Affiliation Program (IIAP)  

IMEC’s Industrial Affiliation Program (IIAP) is designed to create an innovation 

model in which affiliated companies share costs, risks, human resources and 

intellectual property while engaging in collaborative R&D on generic technologies. 

                                                 
1 In 2010, IMEC was collaborating with approximately 200 universities worldwide in its core CMOS 
(Complementary Metal Oxide Semiconductor) division only and hosted 194 visiting PhD students at its 
research facilities. IMEC’s own researchers, around 1000, published more than 1,750 scientific articles 
in 2009. 
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Guest researchers, including academic and industrial researchers affiliated to one of 

its partners, are conducting research at the IMEC laboratories in close collaboration 

with other researchers. Besides IMEC’s own research personnel (about 1000), more 

than 520 guest researchers with 60 different nationalities were conducting research at 

IMEC’s laboratories in 2010, including 344 industrial researchers. Each partner firm 

sends some of its researchers to collaborate in the programs in which the firm 

participates. 

Around 15 different industrial affiliation programs were running in 2010, of 

which a large majority in the Process Technology Unit. These programs are focused at 

solving production issues involved in the next generation of semiconductors. 

 

4.4.  IMEC’s IPR-model  

Crucial for its IIAP business model is an aligned IP-strategy so that all collaborating 

partners are able to build their own and unique IP-portfolio on top of shared IP.  

IMEC has elaborated an IP-strategy to stimulate this technology development and to 

limit blocking amongst its corporate partners (Van Helleputte, 2004). 2

                                                 
2 Johan Van Helleputte is the director for strategic development at IMEC. 

  The basic 

platform technologies are accessible to all its partners.  These technologies, developed 

by IMEC or by IMEC in collaboration with partners, are still in a precompetitive 

phase and require additional R&D to be ready for final application.  Corporate 

partners can build on these technologies to develop proprietary IP in line with their 

own commercial needs.  All technology developed at the IMEC laboratories, in 

execution of dedicated IIAP-programs by academic or industrial researchers, is 

contractually co-owned by IMEC unless otherwise contractually stated. 
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IMEC’s IPR-model classifies patents based on ownership.  IMEC patents 

referring to background knowledge on semiconductor technologies are assigned 

exclusively to IMEC and labeled “R0”. External partners in the IIAP gain access to it, 

as far as needed for the exploitation of the program foreground Information, via a 

non-exclusive and non-transferable license.  These patents constitute the more 

fundamental technological knowledge base generated by IMEC in order to set up 

platform programs within particular strategic fields with the intention of attracting 

external partners.  Technologies that are co-developed with companies in the context 

of IIAP projects, i.e. the collaborative industrial R&D projects conducted at IMEC’s 

laboratories are labeled “R1”.  These patents are co-assigned to IMEC and the 

companies collaborating in R&D.  A partner gets access to the generated IP within the 

technical domain as defined in its contract with IMEC.  Technologies which result 

from proprietary research activities within IMEC, applying the generic “R1” results to 

the company specific setting are labeled “R2” and are assigned exclusively to the 

partner. 

IMEC’s business model and the corresponding IP-model are recognized 

worldwide as a successful medium to stimulate industry-science links, R&D 

collaboration and ultimately technology development in the industry.  For our analysis, 

it allows to track the mobility of people and ideas around IMEC, as will be detailed in 

the next section. 

 
 
5. Data and Methodology  

5.1. Data and Sample  

5.1.1. Sample Selection  
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Our dataset is constructed by collecting first all patent applications filed by IMEC 

between 1990 and 2005 which we retrieved from the Worldwide Patent Statistical 

Database (PatStat edition April 2008). From this sample of 578 patents,3

Second, we retrieved all patents from IMEC affiliated inventors, i.e. inventors 

on an IMEC patent. All different name variants and corresponding person 

identification numbers of this set of inventors were retrieved using search keys to take 

into account different spellings. We collected 1863 patents mentioning at least one 

IMEC affiliated inventor. The use of detailed personnel data obtained from IMEC 

allows us to identify the affiliation of an inventor at a particular moment in time. We 

eliminated all IMEC employees at the time of patenting and name these remaining 

inventors “boundary spanning” inventors as they have been active in the generation of 

IP at IMEC at some point in their career.

 we identified 

531 unique inventors, i.e. inventors affiliated to IMEC or to one of its partners, 

including companies, universities or other research institutes. This set of patents was 

validated by IMEC.  

4

Third, we collected all patents citing the set of original patents with IMEC as 

an applicant. These patents share the same technological space as the IMEC patents 

and provide a reasonable control group for our selection of patents.  

 

The final sample to analyze the effects of science links consists of 1,089 

USPTO patents, 1,835 unique inventors and 87 companies. 5

                                                 
3 These patents include EPO, USPTO and PCT patent applications 

 Figure 1 provides a 

4 The match of inventor names was made based on matches of name, first name, initial and address. In 
the case of differences in addresses or names, we checked the technology field of the patent and the 
applicant name to determine a match. While this rigorous approach might lead to false negative 
matches (type I error), it minimizes/eliminates false positive matches (type II error). Given our 
objective to trace inventor interaction and mobility, this conservative approach seems most appropriate.  
5 The initial sample consists of 5,802 patents (825 IMEC patents, 1,038 patents from IMEC affiliated 
inventors and 3,939 other patents citing IMEC patents), 7,566 unique inventors and 1,348 unique 
applicants, including around 1,200 companies, 82 universities and 66 research centers. For the 
remainder of the analysis, we restrict attention to USPTO patents only (3,606) and subsequently 
eliminate patents (co)assigned to IMEC (302), patents not assigned to companies (488), patents from 
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visual description of the final sample construction. The sample can be divided 

between 221 company-owned patents which mention at least one boundary spanning 

IMEC affiliated researcher employed by the assignee company6

Insert Figure 1 here 

 as inventor and 868 

company-owned patents without this inventor link but citing a patent (co)assigned to 

IMEC. Each group of patents can further be subdivided based on whether the 

applicant company is a partner collaborating in IMEC’s industrial affiliate program. 

This results in 176 patents assigned to partner companies and mentioning a boundary 

spanning IMEC visiting researcher as inventor, 45 patents assigned to non-partner 

firms but having a boundary spanning inventor on the patent, 435 patents assigned to 

partner companies and citing IMEC patents and 433 patents assigned to non-partner 

companies but citing IMEC patents. This classification allows us to analyze the 

separate and combined effects of having organizational and individual links with 

science through IMEC. 

 

5.1.2. Classification of  patents: invention-, inventor-, and organizational-level links 

with IMEC 

To classify the patents we have exploited IMEC’s basic IPR-model. We used the 

following procedure in line with IMEC’s IP-model and defined the IMEC 

technologies as follows:  

 R0 are patents exclusively assigned to IMEC or co-assigned to IMEC and 

universities or individuals,  

                                                                                                                                            
companies with less than 4 patents in our sample, patents which do not share the same technological 
space as the IMEC patents, for which we don’t have all relevant characteristics or for which we don’t 
have information on the affiliation of the IMEC visiting researcher (1,745).  
6 We obtained information on the affiliation of both payroll and non-payroll researchers from IMEC. 
This data, in combination with information from the internet, allowed us to make sure that an inventor 
is indeed employed by the assignee company. We eliminated all cases whereby no information is 
available on the affiliation. 
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 R1 are patents co-assigned to IMEC and affiliated “partner” companies  

In addition, we define four new categories:  

 BoundarySpanning-Affiliate patents are patents assigned to an IMEC affiliated 

partner organization and developed by a boundary spanning inventor, i.e. an 

inventor that has been active in the generation of IP at IMEC at some point in 

their career.  

 Citing-Affiliate patents are patents assigned to affiliated partners citing R0-R1 

patents, but without being developed by a boundary spanning inventor.  

 BoundarySpanning-NonAffiliate patents are patents assigned to non-affiliate 

companies, but that have a boundary spanning inventor as an inventor on the 

patent. 

 Citing-NonAffiliate patents are patents assigned to non-affiliated companies 

but citing R0 or R1 patents but without being developed by a boundary 

spanning inventor. 

 

The classification of the patents according to this methodology allows us to estimate 

the impact of boundary spanning inventors and affiliate linkages with science at the 

invention (patent) level. The strongest link is a combination of boundary spanning 

inventor and organizational-level links, as is the case for BoundarySpanning-Affiliate 

patents. Patents that only have an organizational-level link with the research center 

are Citing-Affiliate patents, while BoundarySpanning-NonAffiliate patents are patents 

with only an inventor link to IMEC. These are most likely cases whereby a non-

partner company hires away an affiliated or visiting researcher.   Finally, Citing-

NonAffiliate patents don’t have any affiliated nor inventor link except for the fact that 

these patents cite an R0 or R1 and, hence, were developed in the same technology 
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space. These are the ultimate control group to compare our various link-categories to. 

Note that in contrast with some of the literature, we do not consider a citation by a 

firm patent to IMEC as a genuine knowledge link. We use citations for identifying 

technology related patents.  

Figure 2 below gives an overview of the classification of patents according to 

the links with science through IMEC.  

Insert Figure 2 here 

 
5.2. Measures for Innovation Quality, Cumulativeness of Research, and, Technology 

Lead Time  

By classifying all patents according to boundary spanning inventor and/or affiliate 

links with IMEC, we estimate the impact of different links on various outcome 

dimensions.  

 

5.2.1.1. Quality of Innovation 

To evaluate the effect of linking to science through IMEC on the technological impact 

and the economic value of an organization’s patents, we employ an indicator 

proposed in past studies on patent quality. The most used indicator of patent value and 

quality is the number of forward citations received from subsequent inventions. The 

number of forward citations a patent receives is related to its technological importance 

(Albert et al., 1991; Carpenter et al, 1993; Henderson et al., 1998; Jaffe et al., 2000), 

social value (Trajtenberg, 1990), private value (Harhoff et al, 1999; Hall et al., 2005), 

patent renewal (Harhoff et al, 1999) and patent opposition (Lanjouw and 

Schankerman, 1999). Research based on an inventor-targeted survey to estimate the 

economic value of European patents also reveals that although forward citations carry 

a lot of noise, it proxies closely the estimated economic value (Gambardella et al., 
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2008). We calculate the total of all forward citations received by an individual patent. 

We also used a fixed citation window of 3 years with similar findings. In addition, we 

use a dummy indicating whether the patent is in the top 10% of citations received 

within 3 years of all patents in our sample. 

In line with our hypotheses developed in section 3, we expect a positive 

correlation between boundary spanning links and forward citations, i.e.  Boundary 

Spanning or Affiliate patents have a higher rate of forward citations as compared to 

Citing-NonAffiliate patents.  When boundary spanning inventor links would be a 

stronger mechanism to effectively transfer cross-institutional knowledge as compared 

to an affiliate link, we expect the difference between BoundarySpanning-NonAffiliate 

patents  and Citing-NonAffiliate patents  to be larger than between Citing-Affiliate 

and Citing-NonAffiliate patents (equivalent to BSA > CA).   Similarly, 

BoundarySpanning-Affiliate patents having more forward citations compared to 

Citing-Affiliate patents  would suggest that beyond an affiliate link, a boundary 

spanning inventor link is able to generate extra value.   If inventor and affiliate links 

are complementary, i.e. boundary spanning inventor links are more effective for 

affiliated partners and/or affiliated partners get more value out of boundary spanning 

inventor links, we have BSA patents outperforming both CA  and BSNA patents 

relative to CNA patents, i.e. BSA – CA > BSNA – CNA.   

 

5.2.1.2. Cumulativeness of Innovation 

Firms working in a particular technology area can build on their internal knowledge. 

Self-citations reflect this capacity of the firm to build further on its existing internal 

technologies. We calculate the proportion of forward citations of our sample patents 

that are self-citations as an indicator for the fact that firms tend to build on these 
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technologies relative to others building forward on their technologies. Hence, the 

proportion of self-citations reflects the extent to which the company is able to or 

attempts to appropriate the returns to its R&D investments (Ahuja, 2003).   

In line with our hypotheses developed in section 3, we expect firms with links 

to IMEC to have a higher capacity to build on their internal knowledge.  Particularly 

the link through boundary spanning inventors should improve this capacity. 

 

5.2.1.3. Technological Lead Time 

Citation lags between patents are used to analyze the speed at which the knowledge 

captured by the invention is assimilated and used to develop subsequent inventions. 

Here we refer to how fast companies start developing new technologies in the same 

technology space as the newly developed technologies at IMEC, i.e. we calculate – in 

years – the citation lag of citations of patents to R0 and R1, the base IMEC 

technologies.  

In line with our hypotheses developed in section 3, we expect firms with links 

to IMEC to be faster in developing new technologies.  Particularly the link through 

inventor mobility should improve this capacity. 

 

5.2.2. Control Variables  

To obtain consistent estimates, we include control variables at the invention level, 

inventor level and firm level. 

At the invention level, we first control for 30 patent technology classes as 

defined by Fraunhofer (FhG-ISI, Germany) based on concordance with IPC codes 

(OECD, 1994). As pointed out by Fabrizio (2009), patents in fast evolving 

technological classes will cite more recent patents on average so that we need to 
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control for this bias. Also, as illustrated by Hall and Ziedonis (2001), citation lags in 

computers, communications and electronics are relatively short compared to other 

technological fields. Moreover, different technological classes are characterized by 

different citation patterns, both in the amount and the scope of citations to patents and 

scientific literature. Traditional technological fields typically cite more and are cited 

less, whereas emerging technological fields are cited more but are average in terms of 

citations made.  

Second, we control for changes in citation patterns over time by including 

application year dummies. At the same time, we include the logarithm of age as an 

offset to control for the fact that older patents have more time to be cited so that our 

count measures based on forward citations do not suffer from truncation. 7

In addition, we introduce patent scope as the number of core International 

Patent Classification (IPC) codes. Patent scope could determine the extent of patent 

protection and monopoly power and thus the economic value of an invention 

(Scotchmer, 1991). But, more IPC classes covered by the patent could also affect the 

likelihood of being cited as the patent covers more technology space. The count of 

citations to scientific work (NPRS) is included as an additional control as more 

references to scientific work are associated with a higher number of received citations 

merely because the act of publication allows the ideas underlying the patent to diffuse 

more broadly and rapidly (Fleming and Sorenson, 2004). Similarly, we control for the 

number of backward patent references to control for unobserved factors affecting 

citation behavior. 

 

                                                 
7 To mitigate the truncation bias, Czarnitzki et al. (2008) propose to estimate the model with exposure 
as explained in Cameron and Trivedi (1998, pp. 303). Hereby, the exposure during which citations 
might occur is defined as the age of the patent in 2007. Alternatively, one can restrict the citation 
window to 3 or 4 years. Results are not really affected, but it affects the interpretation of the application 
year dummy. 
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Finally, we include the number of inventors as an additional control because 

more inventors might lead to a faster and greater diffusion of the tacit and complex 

knowledge underlying the patent, resulting in different forward citation patterns.  

Besides controls at the level of the invention, we include for each 

patent inventor

Finally, we introduce for each patent additional measures on the organization of 

R&D at the 

 his experience to control for a potential inventor selection issue. 

Particular types of technologies might be developed by more competent or 

experienced researchers. We calculate inventor experience as the number of patents 

filed at the USPTO by the inventors before the application year. We made use of “the 

careers and co-authorship networks of U.S. patent-holders” data (Lai, D’Amour and 

Fleming, 2009) to identify inventor histories. 

firm level to control for firm specific variation. Several stories have been 

advanced as to why organization size matters for research productivity. First, larger 

organizations wield more resources and are able to exploit economies of scale in 

research (Cassiman et al., 2005). Cassiman, Perez-Castrillo and Veugelers (2002) find 

that larger firms have an incentive to proportionally invest more in basic research as it 

increases the productivity of applied R&D. Second, larger organizations allow more 

specialization. In larger firms, researchers seem to work on more projects but are 

more specialized in the type of projects they engage in (Kim et al., 2004). Third, 

larger companies are able to exploit economies of scope. As larger firms are active in 

different product markets and technology domains, more opportunities for exploiting 

economies of scope within the firm arise (Cassiman et al., 2005; Henderson and 

Cockburn, 1996).  Scale is calculated as the number of US patents filed by the firm in 

the 5 years before the application year of the patent, Scope as the number of distinct 

IPC codes of a company’s patents in the 5 years before the application year of the 
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patent and Age Company as the number of years since the company’s first patent at 

the moment of the filing of the focal patent.8  Sorenson and Stuart (2000) find that on 

the one hand older firms produce more patents, but on the other hand these same firms 

produce less valuable patents. Older firms self-cite more and have older backward 

citations. 9

 

  In addition, we also include firm fixed effects to capture unobserved 

heterogeneity across companies.   

5.3. Descriptive analysis  

Table 1 presents an overview of all the patents in our sample categorized according to 

our methodology and by technology field. IMEC patents are predominantly classified 

as semiconductor patents. As for partner and non-partner patents we observe more 

variety in technology field as we are moving closer to applications. 

Insert TABLE 1 here 

Table 2 shows all the firms listed in the top25 of firms in the semiconductor industry 

based on sales between 1987 and 2008 (Source: iSuppli corporation ranking). Of the 

43 firms appearing in the list between 1987 and 2008, 20 firms are IMEC affiliated 

partners during the entire period. We can also appreciate IMEC’s position in the 

global semiconductor industry from the fact that although not all firms are IMEC 

IIAP partners, all but 14 firms (of which 6 more recently affiliated partners) are 

represented in our dataset through patents linking to IMEC.  

Insert TABLE 2 here 

Table 3 presents some descriptive statistics for the total sample, while Table 4 gives 

an overview of descriptive statistics by type of patent. The IMEC patents (R0-R1) 
                                                 
8 These firm-level variables vary across different patents of the same company applied for at different 
moments in time. 
9 Note that their interpretation of self-citations does not necessarily correspond to our notion of 
appropriation in science intensive businesses. See also Catani (2005) for a similar interpretation of self-
citations in optical fiber technology. 
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have fewer backward citations (patent references) and are more likely to cite the 

scientific literature (non-patent reference binary), confirming the more “basic” and 

original nature of these patents. 14% of the R0 patents are co-developed with 

universities illustrating IMEC’s strategy to collaborate with academics in order to 

build up its background knowledge and confirming its role as bridging institution. 

When we look at the company patents, we see that BoundarySpanning-

Affiliate patents, which have both a boundary spanning inventor and affiliate link to 

IMEC, receive the highest number of forward citations. This is particularly clear when 

we restrict the citation window to 3 years, controlling for the exposure time of patents.  

These patents also have a higher probability to be a “highly cited” patent.  Citing-

Affiliate patents with only an affiliate link to IMEC, but without the boundary 

spanning inventor link, are as likely as BoundarySpanning-Affiliate patents to receive 

forward citations, but the count of these citations are lower, and the probability of 

being a “highly cited” patent is also lower. Both BoundarySpanning-Affilitate and 

Citing-Affiliate patents are more likely to be built upon internally as the partner is 

more likely to continue developing technology in that area. Self-citations of these 

patents are much higher and these patents themselves come sooner after initial IMEC 

background technology has been developed. Given the strategic importance of 

technology lead time in the industry, we find that patents with boundary spanning 

inventors and/or organizational links with IMEC have an average citation lag roughly 

between 2 and 3 years while patents without any link have an average citation lag of 

9.7 years.  

In summary, these first descriptive results already indicate that the tighter the 

link with IMEC, the faster a company seems able to assimilate the knowledge 

captured by the invention and to use this knowledge to develop subsequent inventions. 
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We argued that because of the tacitness and complexity of know how underlying 

leading edge research, researcher interaction and mobility does play an essential role. 

We indeed observe that individual inventors from affiliated partners visiting the 

research center in order to collaborate with other industrial and scientific researchers 

in joint R&D projects – i.e. boundary spanning inventors – seem to play a decisive 

role as link between industry and science. These descriptive statistics are already 

supportive for the positive impact of IMEC links for technology development, 

particularly the combined inventor and organizational link. But as we do not control 

for differences across application years, technology classes and firms, these findings 

still await confirmation from multivariate analysis.  

Insert TABLE  3 & 4 here 

 

5.4.  Multivariate Methodology  

5.4.1. Quality of Innovation  

To estimate the technological impact of the patents as measured by their number of 

forward citations, we use count models as the dependent variable is a non-negative 

integer. The specification of our baseline model as a Poisson or a Negative binomial 

model follows previous studies. We first estimate the Poisson quasi-maximum 

likelihood model (PQML) because this renders consistent estimates given that the 

mean is correctly specified (Gouriéroux et al., 1984). However, Hausman et al. (1984) 

propose to use a Negative Binomial model which allows for overdispersion and 

heterogeneity across observations. Moreover, our sample has a large number of 

observations with zero value (31% of 1,089 patents). To deal with this issue, a Zero-

Inflated Negative Binomial model (ZINB) is estimated whereby the population is 

divided between two latent groups, the always-zero group, i.e. patents that will never 
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receive a citation, and the not-always-zero group, i.e. patents which at least have the 

potential of receiving citations (Long, 1997). A logit model is used to determine to 

which part of the population an observation belongs while the estimated counts are 

obtained via a Negative Binomial specification.   Finally, we estimate a probit model 

with being a highly cited patent as dependent variable. 

 

5.4.2. Cumulativeness of Innovation 

To estimate the importance of building further internally on IMEC related technology 

we regress the proportion of self-citations of the patent on our control variables and 

patent indicators for the type of link with IMEC. We use OLS and heteroskedastic 

Tobit models to control for censoring of the observations. 

 

5.4.3. Technological Lead Time  

To estimate the speed at which research teams with different inventor- and 

organizational-level links with science through the research center assimilate science-

related prior art and develop subsequent inventions building on this prior art, we use 

forward citation lags, i.e. the lag in years between the publication date of the cited 

patent application – R0 or R1 in this case – and the application date of the citing 

patent application, as dependent variable. We apply a simple OLS specification with 

robust standard errors clustered by citing firm. 

 

6. Results  

6.1. Quality of Innovation 

Table 5 shows the results of our count model estimations. Patents of affiliated partner 

companies (with or without boundary spanning inventor) receive between 2.9 and 28 
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times more citations compared to the control group of patents assigned to non-

affiliated companies. As we find evidence that patents developed by affiliated-

partners without the support of boundary spanning inventors have a larger 

technological impact compared to patents developed by non-affiliated organizations, 

this suggests that internal spillover effects exist among company researchers involved 

in more experimental, science-related research and company researchers involved in 

the development of commercial end-user applications.10

Our expectation that patents developed by affiliated companies with the 

assistance of boundary spanning inventors, are more valuable and have a larger 

technological impact compared to patents developed by affiliated companies without 

the assistance from boundary spanning inventors seems to hold in the Negative 

Binomial and the Zero-Inflated Negative Binomial models, but the difference in 

coefficients is not statistically significant.  

  

The boundary spanning inventor link for non-affiliate partners does show up 

with more forward citations compared to the control group suggesting that non-

affiliated companies might benefit from cross-institutional employee interaction and 

mobility by hiring away researchers from partner companies.  But this effect only 

shows up in the Poisson models and is only marginally significant.    

The combination of the low (and often insignificant) coefficient for 

BoundarySpanning-NonAffiliate patents and the minimal difference between the 

coefficients of BoundarySpanning-Affiliate and Citing-Affiliate patents are not 

supportive of our hypotheses that when comparing the organizational and the 

boundary spanning inventor link, the latter one is the strongest and can generate the 
                                                 
10 To further analyze the importance of internal links between boundary spanning inventors and 
company researchers not visiting IMEC, we looked for patents without boundary spanning inventors 
which have an inventor which is also mentioned as inventor on a patent together with boundary 
spanning inventors of the same company but not as inventor on a R0/R1 patent. This is the case in only 
10 of the 435 R3 patents. 
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most extra value. Nor is there any strong evidence of complementarity between the 

two links. The results rather seem to indicate it is the affiliate link that matters more 

than the boundary spanning inventor link. At the same time this result might raise 

some concern about partner selection issues and unobserved heterogeneity in general. 

We deal with this issue in Section 6.4 where we discuss the robustness of our findings.  

In line with predictions from previous research, the count of IPC classes and the count 

of citations to scientific literature are positively related to the number of forward 

citations and the age of a company is negatively related to the number of forward 

citations.   

Insert TABLE 5 here 

Table 6 presents the results on the probability to be a highly cited patent (i.e. 

receiving more than 8 citations in the 3year window, which is the case for 10% of the 

patents in our sample) as dependent variable.  The results confirm the previous 

analysis, with affiliate companies being more likely to develop breakthrough 

inventions.  Both BoundarySpanning-Affiliate and Citing-Affiliate patents are 

significantly positive, but in this case, the marginal effect for BoundarySpanning-

Affilitate patents the larger of the two, in favor of a complementary effect between 

both links.  This suggests that for delivering breakthrough innovations, the boundary 

spanning inventor link is important for affiliate companies and not for other 

companies. Patents from affiliated firms with a boundary spanning inventor link have 

a 51% higher probability a being a highly cited patent.  This compares to a 35% 

higher probability for patents from affiliated firms without a boundary spanning 

inventor link. Maybe somewhat surprisingly, BoundarySpanning-NonAffiliate patents 

are not more likely to be highly cited. 

Insert Table 6 here 
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6.2. Cumulativeness of Innovation 

Building further on technology linked to IMEC technologies is an important way to 

capitalize and appropriate returns to the R&D investment. As expected, IMEC 

partners are more likely to build further on these technologies, as indicated by the 

higher proportion of self-citations received by BoundarySpanning-Affiliate and 

Citing-Affiliate patents. This result is in line with Ziedonis and Ziedonis (2005), 

which find that member firms of the SEMATECH consortium are building upon the 

results of their collective research to a greater degree than are non-member firms. 

These patents are expected to have on average a 29% to 34% larger proportion of self 

citations relative to comparable patents by non-affiliates. As a result, we clearly do 

find an IMEC-effect as affiliate partners are more active in building on these 

technologies, even in the absence of a boundary spanning inventor link. Nevertheless, 

we find that partner patents with a boundary spanning inventor link have an even 

larger proportion of self citations compared to patents of affiliate partners without a 

boundary spanning inventor link.  This finding suggest the complementary role of 

boundary spanning inventors for affiliated partners in order to better absorb the 

complex and tacit technological knowledge underlying micro-electronics research via 

mobility and communication, appropriating returns to the R&D investment through 

the internal development of the next generation of technologies. However, the 

coefficients are not significantly different. 

A non-affiliate patent with a boundary spanning inventor link has a smaller 

proportion of self citations. This result seems to suggest that the hiring company is not 

able to fully appropriate the return to its investments relative to others building 

forward on the technologies developed by this researcher. Being able to fully exploit 

the researcher mobility link seems to require a complementary institutional link. 
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Insert TABLE 7 here 

6.3. Technological Lead Time  

We argued that time-to-market and lead time of innovation projects are increasingly a 

differentiator in the micro-electronics business because of the relentless shortening of 

product life cycles. The results displayed in Table 8 show that patents from affiliated 

firms and (co-)developed by boundary spanning researchers are fastest in citing the 

more basic, science-related IMEC patents (R0, R1). The technology lead time 

between the publication of the prior art and the filing of a new patent building forward 

on this prior art is expected to be 3 years and 3 months shorter compared to patents 

without any links, a result which is both statistically and economically significant. 

The fact that the difference in expected citation lag between partner patents with and 

without boundary spanning inventor links is statistically significant suggests that the 

bridging researchers play a key role in assimilating the science-related prior art and in 

reducing lead time of the next generation of technologies built on this prior art. Also 

supportive of the importance of the boundary spanning inventor link, is the result that 

the coefficient for BoundarySpanning-NonAffiliate patents is significantly negative.  

Hiring away an affiliated or visiting researcher enables also non-partner firms to keep 

up with technological progress and reduce lead time with respect to non-partner 

companies.  Nevertheless, the significantly lower coefficient for BoundarySpanning-

Affiliate patents compared to both Citing-Affiliate and BoundarySpanning-

NonAffiliate patents indicates that the boundary spanning inventor link is particularly 

important to generate technology lead time in combination with an affiliate link.   

Poaching of IMEC related inventors is less effective for non-affiliated partners to 

establish technology lead time.   
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Unfortunately, these results are not robust to the inclusion of firm dummies, 

suggesting that there are important company characteristics beyond IIAP affiliation 

and other firm controls included, that need to be factored in to explain the acquisition 

of technology lead time. 

Finally, we find that the citation lag between two technologically similar 

patents or between patents developed by the same inventor(s) is shorter, although the 

latter effect is not significant.  

Insert TABLE 8 here 

6.4. Robustness Checks 

While the empirical results are supportive for the tangible effects of links with IMEC, 

we need to address potential selection issues at the level of the technology, inventor or 

partner firm. First, one could argue that the IMEC related technology is a better 

technology and would get cited more anyway. However, without IMEC these 

BoundarySpanning-Affiliate technologies would not exist, so it is difficult to come up 

with an alternative counterfactual other than the one we have, i.e. comparing 

BoundarySpanning-Affiliate technologies to the relevant Citing-NonAffiliate 

technologies. On average the IMEC related technologies are of higher quality as 

shown in the results of Table 5, controlling for other characteristics of the technology, 

patents, inventors and the firms.   

Second, there might also be an inventor selection issue in case firms would 

typically send their more competent researchers to IMEC. From interviews with 

managers from IMEC we learned that this is not necessarily the case because 

companies do not want to share their most valuable human resources with other firms 

-including competitors- while at the same time making sure that the participating 

researchers are able of identifying, absorbing and integrating the relevant knowledge. 
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IMEC does attempt to control such behavior by providing affiliates with regular 

evaluations of the affiliate researchers in the IMEC teams. We attempted to test the 

inventor selection issue by matching the prior patents of IMEC-visiting researchers, 

i.e. prior to these visits, with a group of comparable patents applied for by the same 

firm within the same year. Results obtained from T-tests indicate that the paired group 

of patents do not differ significantly,11 suggesting that there is no obvious inventor 

selection issue.12

Beyond the inventor selection issue, one could argue that firms which expect to 

get more out of such a partnership are more likely to become a partner in the first 

place. At the same time there might also exist alternatives to IMEC as a research 

partner. However, 15 of the largest semiconductor companies between 1987 and 2008 

not engaged in IIAP are also represented in our dataset through citations to IMEC 

patents or by hiring away researchers from partner firms, indicating that these 

technologies seem also important for non-partner companies. For example, IBM has 

organized a parallel network for developing technologies in the same technology area 

as IMEC. Nevertheless, this network is organized very differently compared to the 

IMEC affiliate program. As our results show (and for results not shown where we 

restrict the control sample to patents of these firms), IMEC affiliates seem to generate 

better results in the technological areas where IMEC operates compared to non-

partner companies.  

  

To formally control for a partner selection issue, we estimated the probability of a 

particular patent to be an affiliate partner patent at a particular moment in time in 

function of patent characteristics, a company’s core technological area (8 categories), 
                                                 
11 We found no statistically significant differences between the number of citations received within 
three years, the proportion of self citations, the number of IPC codes, the number of backward patent 
citations, the number of non-patent references and the number of inventors. 
12 In the case that partners are likely to send less competent researchers, this would actually bias the 
results agains us. 
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the location of its headquarters (USA/Europe/Japan), whether the firm is in the top 25 

of largest semiconductor firms as well as its scale, scope and age. The selection model 

makes 82% correct predictions. Consequently, we calculate the propensity scores to 

be a partner patent and link each partner patent to the nearest neighbor non-partner 

patent, i.e. we compare BoundarySpanning-Affiliate and Citing-Affiliate patents with 

BoundarySpanning-NonAffiliate and Citing-NonAffiliate patents not on average, but 

as closest neighbor. Results are presented in Table 9. The matched patents reveal a 

similar story as from our regressions with some interesting nuances. Boundary 

spanning inventors of affiliate partners matter for the quality of the technologies 

developed as shown for the forward citations and the highly cited patents. These 

results are not as strong for the Citing-Affiliate versus Citing-NonAffiliate patents. On 

the contrary, self-citing seems more relevant for affiliate firms and is less directly 

related to the boundary spanning inventors.  But overall our findings in the previous 

sections do not seem driven by a partner selection effect. 

Insert TABLE 9 here 

7. Discussion and Conclusion 

In conclusion, we find strong support for IMEC affiliated partners to develop higher 

quality innovations in the technology domain where IMEC is active. Furthermore, 

partner firms are more likely to build on these technologies internally, improving 

appropriation of the returns to R&D. Finally, the IMEC partner firms are faster on the 

ball, linking faster to these new technologies. Overall, we therefore conclude that 

institutionally linking to IMEC has provided some tangible benefits for IMEC 

partners. 

We have found that the boundary spanning inventors, i.e. researchers of a 

partner actively engaged in joint research with IMEC are an important link in this 
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chain as they allow the partner to develop higher quality innovations but in particular 

as they allow to capitalize the returns to R&D through a faster internal development 

of the next generation of commercial technologies. The technologies developed by the 

bridging researchers are extensively used internally as a platform for further 

technology development.  

As these effects from boundary spanning inventor links are most strongly 

found for IMEC partners,  this suggests that companies should have a complementary 

institutional link to benefit from cross-institutional employee interaction and mobility, 

in particular for the appropriation of returns to R&D through establishing cumulative 

technology development and lead time.  

  Although the results are very supportive of tangible benefits for IMEC 

partners, they nevertheless also suggest important avenues for further research. 

Particularly the significance of the firm dummies suggests that there are critical 

company characteristics beyond the scale and scope of R&D, the age of a company 

and IIAP affiliation that need to be factored in to explain appropriation success. More 

information on how firms organize internal spillovers across projects would be 

important and interesting complementary information.  
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Figure 1: Final Sample Construction 
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TABLE 1:  Patents by Technology Field 
 
 
 IMEC IMEC AFFILIATE NON-IMEC AFFILIATE  

FIELD  R0 R1 

BOUNDARY 
SPANNING 
INVENTOR 

NO 
BOUNDARY 
SPANNING 
INVENTOR 

BOUNDARY 
SPANNING 
INVENTOR 

NO 
BOUNDARY 
SPANNING 
INVENTOR 

Electrical machinery and apparatus, 
electrical energy  4% 2% 4% 5% 5% 5% 

Telecommunications  11% 8% 10% 8% 12% 9% 

Information technology  6% 7% 4% 6% 6% 5% 

Semiconductors  36% 41% 34% 27% 32% 26% 

Optics  10% 8% 11% 13% 9% 13% 

Analysis, measurement, control 
technology  10% 10% 7% 8% 6% 8% 

Macromolecular chemistry, polymers  2% 5% 5% 3% 3% 3% 

Chemical engineering  2% 2% 1% 2% 2% 2% 

Surface technology, coating  3% 4% 3% 5% 4% 4% 
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TABLE 2: Ranking Semiconductor Companies 
 
RANKING 
BASED ON 
REVENUES 
2008 COMPANY 

MARKET 
SHARE 
2008 

IMEC 
PARTNER R1 

Boundary 
Spanning 
Affiliate 
Patent 

Citing  
Affiliate 
Patent 

Boundary 
Spanning  

Non-Affiliate 
Patent 

Citing  
Non-Affiliate 

Patent 
      ALL US ONLY US ONLY US ONLY US ONLY 
1 INTEL 13.10% YES 1  67   
2 SAMSUNG 7.00% YES 10  30   
3 TOSHIBA SEMICONDUCTORS 4.30%      19 
4 TEXAS INSTRUMENTS 4.30% YES 11 43 15   
5 STMICROELECTRONICS 4.00% YES 8 3 6   
6 RENESAS TECHNOLOGY 2.70% YES 1  4   
7 SONY 2.70% YES 3  5   
8 QUALCOMM 2.50% YES      
9 HYNIX 2.30% YES      
10 INFINEON  2.30% YES 7 4 20   
11 NEC 2.30%      27 
12 ADVANCED MICRO DEVICES 2.10% YES  26    
13 FREESCALE SEMICONDUCTORS 1.90%      4 
14 BROADCOM 1.80%      21 
15 PANASONIC 1.70% YES      
16 MICRON 1.70% YES   101   
17 NXP  1.60% YES      
18 SHARP 1.40%      11 
19 ELPIDA MEMORY 1.40% YES      
20 ROHM 1.30% YES      
21 NVIDIA 1.30%       
22 MARVELL TECHNOLOGY GROUP 1.20%       
23 MEDIATEK 1.10%       
24 FUJITSU MICROELECTRONICS 1.10% YES  1 17   
25 ANALOG DEVICES 1.00%       
         

 
OTHER  PLAYERS IN TOP 20 FROM 
1987 TO 2007        

 AGERE        
 AT&T       5 
 GENERAL ELECTRIC       10 
 HITACHI SEMICONDUCTORS  YES   19   
 HYUNDAI SEMICONDUCTORS       6 
 IBM MICROELECTRONICS      4 43 
 LG       6 
 LUCENT TECHNOLOGIES      3 18 
 MATSUSHITA ELECTRIC       13 
 MITSUBISHI SEMICONDUCTORS      5 11 
 MOTOROLA SEMICONDUCTORS       13 
 NATIONAL SEMICONDUCTOR  YES 1  4   
 OKI SEMICONDUCTORS       5 
 PHILIPS SEMICONDUCTORS  YES 43 7 8   
 SANYO SEMICONDUCTORS        

 SGS THOMSON        
 SIEMENS SEMICONDUCTORS  YES 13 8 2   
 SPANSION        
 SUM    92 298 12 212 
 % OF SAMPLE    52% 69% 27% 49% 
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TABLE 3: Descriptive Statistics 
 

 Description Obs Mean Std Dv Min Max 
Count forward citations The number of times a patent is cited as 

prior art by subsequent patents 1089 5.31 11.01 0 131 
Count forward citations within 3 
years 

The number of times a patent is cited as 
prior art by subsequent patents within 
three years after publication 1089 2.87 5.17 0 61 

Forward citations binary Dummy indicating whether a patent 
received  citation(s) 1089 0.69 0.46 0 1 

Dummy highly cited Dummy indicating whether the patent 
received 8 citations or more within 3 years  

1089 0.10 0.31 0 1 

Count forward self citations The number of times a patent is cited by 
patents assigned to the same company 1089 1.31 5.49 0 116 

Count forward self citations 
within 3 years 

The number of times a patent is cited by 
patents of the same company within three 
years after publication 1089 0.81 2.23 0 27 

Proportion forward self citations The number of self citations divided by 
total amount of forward citations 1089 0.17 0.31 0 1 

Forward self citations binary Dummy indicating whether a patent 
received  self citation(s) 1089 0.32 0.47 0 1 

Patent scope / Count IPCs The number of IPC codes  1089 2.58 2.07 1 14 
Count non-patent references 
(NPRS) 

The number of non-patent  citations 

1089 7.76 15.53 0 99 
Count patent references (PRS) The number of patents cited by the patent 1089 30.41 31.43 0 147 
Count inventors The number of inventors on the patent 1089 2.94 2.10 1 15 
Inventor experience / Count 
patents (‘000) 

The number of patents (in ‘000) applied 
for by the inventors before the application 

1089 0.07 0.15 0 2 
Scale / Count patents last 5 years 
(‘000) 

The number of patents (in ‘000) the 
applicant company applied for in the last 5 
years before the application 1089 4.25 4.39 0 20 

Scope / Count IPC’s last 5 years 
(‘000) 

The number of unique IPC codes (in ‘000) 
appearing on the company’s patents 
applied for in the last 5 years before the 
application 1089 1.27 1.16 0 5 

Age company The number of years since the company’s 
first patent 1089 50.92 28.19 4 109 

Citation lag R0 cited  The number of years between the 
publication date of the cited patent and 
the application date of the citing patent 

2103 7.16 14.28 0 81 

Citation lag R1 cited   564 7.47 15.98 0 80 

Citation lag R0/R1 cited  2667 7.22 14.66 0 81 

Dummy same IPC Dummy indicating whether the cited and 
the citing patent share at least one IPC 
code  

2667 0.41 0.49 0 1 

Dummy same inventor Dummy indicating whether the cited and 
the citing patent share at least one 
inventor 

2667 0.02 0.15 0 1 

Dummy same applicant Dummy indicating whether the cited and 
the citing patent share at least one same 
applicant 

2667 0.01 0.10 0 1 
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TABLE 4: Descriptive Statistics by Patent Type 
 

 IMEC IMEC AFFILIATE  NOT IMEC-AFFILIATE  
 R0 R1  

BOUNDARY 
SPANNING 
INVENTOR 

 

NON-
BOUNDARY 
SPANNING 
INVENTOR 

 

 
BOUNDARY 
SPANNING 
INVENTOR 

 

NON-
BOUNDARY 
SPANNING 
INVENTOR 

 
Count forward citations 7.32 7.67 7.16 4.40 5.13 5.48 
Count forward citations within 3 y 3.05 4.15 4.41 2.38 1.64 2.86 
Forward citations binary 0.78 0.67 0.65 0.66 0.56 0.76 
Dummy highly cited patent 0.07 0.11 0.15 0.09 0.07 0.10 

Count forward self citations 0.67 1.33 2.46 1.40 0.24 0.87 
Count forward self citations within 3 y 0.27 0.70 1.28 0.90 0.11 0.61 
Proportion forward self citations 0.12 0.15 0.21 0.20 0.05 0.13 
Forward self citations binary 0.29 0.30 0.36 0.35 0.13 0.31 
Citation lag R0 cited    2.09 3.07 2.89 9.23 

Citation lag R1 cited    2.08 2.36 1.50 11.95 

Citation lag R0/R1 cited   2.09 2.88 2.54 9.71 

Patent scope / Count IPCs 2.44 3.22 2.84 2.36 2.62 2.69 
Count non-patent references (NPRS) 6.69 6.83 7.03 7.17 2.78 9.16 
Non-patent references binary  0.83 0.72 0.61 0.60 0.51 0.65 
Count patent references (PRS) 10.07 13.24 17.51 36.39 19.64 30.76 
Count inventors 3.33 4.11 3.43 2.81 2.58 2.90 
Inventor experience / Count patents (‘000)   0.04 0.10 0.04 0.04 
Scale / Count patents last 5 years (‘000)   2.06 5.84 3.51 3.62 
Scope / Count IPC’s last 5 years (‘000)   0.82 1.61 1.28 1.12 
Age company   44.23 56.00 46.44 49.02 
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TABLE 5: Count Forward Patent Citations 

 

Poisson Quasi Maximum Likelihood 

 
 

Negative 
binomial 

Zero-inflated Negative binomial 

 
 

Count forward 
citations 

within 3 years 
 (1) (2) (3) (4) (5) 

Count 
(6) 

Logit 
(7) 

        
BOUNDARY SPANNING 0.8686* 0.7501 1.3843** 2.4541*** 3.3658*** 0.3445 2.8030*** 
AFFILIATE 
 

[0.5146] [0.5553] [0.5897] [0.7031] [0.6696] [0.2577] [0.6219] 

CITING-AFFILIATE 1.0370*** 0.9893*** 1.6317*** 2.2643*** 3.0687*** 0.4167** 2.8601*** 
 [0.2868] [0.3177] [0.3736] [0.3651] [0.2867] [0.1824] [0.3495] 

 
BOUNDARY SPANNING  0.8147* 0.7394* 0.7532* 0.1199 0.4593 0.7419 -0.0832 
NON-AFFILIATE 
 

[0.4194] [0.4326] [0.4388] [0.5471] [0.4769] [0.5373] [0.3086] 

PATENT 
CHARACERISTICS 

       

Count IPCs  0.0700*** 0.0702*** 0.1029*** 0.0565** -0.3087*** 0.0926*** 
  [0.0197] [0.0194] [0.0225] [0.0236] [0.0692] [0.0181] 
NPRS  0.0117*** 0.0116*** 0.0097*** 0.0049* -0.0295 0.0099*** 
  [0.0021] [0.0022] [0.0036] [0.0030] [0.0209] [0.0032] 
PRS  -0.0092*** -0.0091*** -0.0023 -0.0024 0.0035 -0.0052* 
  [0.0019] [0.0019] [0.0027] [0.0021] [0.0043] [0.0030] 
Count inventors  0.0005 0.0002 -0.0362 -0.0183 0.0610 -0.0133 
  [0.0316] [0.0300] [0.0295] [0.0248] [0.0411] [0.0217] 
Log(age)  1 1 1 1   

INVENTOR 
CHARACTERISTICS 

       

Inventor experience   -0.0034 0.4254 -0.1615 -2.4360 0.5046 
   [0.5086] [0.3455] [0.1956] [1.6481] [0.4298] 

FIRM CHARACTERISTICS        

Scale    -0.0166 0.0026 -0.0187 -0.0010 0.0700 
   [0.0585] [0.0519] [0.0461] [0.0260] [0.0965] 
Scope   -0.0763 0.5246 0.5841 -0.0979 0.5360 
   [0.4993] [0.4381] [0.4130] [0.1153] [0.4728] 
Age company   -0.1332*** -0.1490*** -0.1710*** 0.0068** -0.1599*** 
   [0.0160] [0.0200] [0.0168] [0.0035] [0.0161] 

Constant 0.2913 0.6032 2.1598*** 2.1104*** 2.2040*** -13.8528*** -15.8982 
 [0.4368] [0.4404] [0.4569] [0.4727] [0.3765] [1.1999] [0.0000] 

Test of joint significance        
Firm dummies Incl.*** Incl.*** Incl.*** Incl.*** Incl.***  Incl.*** 
Technology class  Incl.*** Incl.*** Incl.*** Incl.*** Incl.*** Incl.*** Incl.*** 
Application year Incl.*** Incl.*** Incl.*** Incl.*** Incl.*** Incl.*** Incl. 

Overdispersion 
parameter (ln alpha) 

   0.5407*** -0.5284***   

    [0.0804] [0.0956]   
Vuong test     12.75***   
Log LH/PLH -18724.434 -17949.444 -17936.513 -4012.5821 -3801.036  -2491.848 
Observations 1089 1089 1089 1089 1089 1089 1089 
        

All regressions include application year, technology and firm dummies, R5 is control group 
Robust standard errors in brackets, clustered by firm, 

*** p<0.01, ** p<0.05, * p<0.1 
Marginal Effects (3): BoundarySpanning-Affiliate 299%**; Citing-Affiliate 411%***; BoundarySpanning-NonAffiliate 112%*  
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TABLE 6: Marginal Effects Dummy Highly Cited Patent 

   
 
 

Probit 

 (1) (2) (3) 

    
BOUNDARY SPANNING 0.5361*** 0.5157*** 0.5154*** 
AFFILIATE 
 

[0.0576] [0.0665] [0.0330] 

CITING-AFFILIATE 0.3512*** 0.3434*** 0.3508*** 
 
 

[0.0554] [0.0547] [0.0570] 

BOUNDARY SPANNING 0.0784 0.0672 0.0598 
NON-AFFILIATE 
 

[0.0845] [0.0787] [0.0719] 

PATENT CHARACERISTICS    

Count IPCs  0.0083* 0.0078* 
  [0.0046] [0.0045] 
NPRS  0.0010** 0.0010** 
  [0.0005] [0.0005] 
PRS  -0.0005 -0.0004 
  [0.0005] [0.0005] 
Count inventors  0.0077 0.0090* 
  [0.0052] [0.0048] 

INVENTOR CHARACTERISTICS    

Inventor experience   -0.0123 
   [0.0560] 

FIRM CHARACTERISTICS    

Scale    0.0151 
   [0.0113] 
Scope   -0.0550 
   [0.0723] 
Age company   -0.0066 
   [0.0042] 

Test of joint significance    
Firm dummies Incl.*** Incl.*** Incl.*** 
Technology class  Incl.*** Incl.** Incl.*** 
Application year Incl.*** Incl.*** Incl.*** 

    
Observations 1089 1089 1089 
Pseudo R-squared 0.359 0.372 0.380 
% Correctly predicted 91.2% 91.4% 91.4% 

Marginal effects reported, All regressions include application year, technology and firm 
dummies, R5 is control group 

Robust standard errors in brackets, clustered by firm, 
*** p<0.01, ** p<0.05, * p<0.1 
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TABLE 7: Proportion Self Citations 

 
 OLS HETORSKEDASTIC TOBIT 

 (1) 
 

(2) 
 

(3) (4) 
 

(5) 
 

(6) 

       
BOUNDARY SPANNING  0.1775** 0.2188** 0.1833** 2.6757*** 2.7778*** 2.6890*** 
AFFILIATE 
 

[0.0732] [0.0909] [0.0850] [0.5349] [0.6049] [0.6612] 

CITING AFFILIATE 0.1165** 0.1403* 0.1118* 2.5090*** 2.5745*** 2.5197*** 
 
 

[0.0559] [0.0746] [0.0642] [0.4512] [0.5126] [0.5638] 

BOUNDARY SPANNING 0.0055 0.0128 -0.0020 -0.2646 -0.2423 -0.3228 
NON-AFFILIATE 
 

[0.0855] [0.0941] [0.0950] [0.3213] [0.3476] [0.3588] 

PATENT CHARACERISTICS       
Count IPCs  0.0001 0.0009  0.0028 0.0054 
  [0.0049] [0.0046]  [0.0115] [0.0111] 
NPRS  0.0013 0.0011  0.0037 0.0030 
  [0.0013] [0.0012]  [0.0027] [0.0023] 
PRS  0.0011 0.0012  0.0019 0.0022 
  [0.0010] [0.0008]  [0.0024] [0.0021] 
Count inventors  -0.0033 -0.0002  0.0032 0.0076 
  [0.0053] [0.0060]  [0.0205] [0.0220] 
Count for citations 0.0015* 0.0015* 0.0014* 0.0081** 0.0080** 0.0080** 
 [0.0008] [0.0008] [0.0008] [0.0034] [0.0037] [0.0035] 
INVENTOR CHARACTERISTICS       
Inventor experience   -0.1244   -0.3090 
   [0.0867]   [0.5158] 
FIRM CHARACTERISTICS       
Scale    -0.0323*   -0.1441*** 
   [0.0170]   [0.0531] 
Scope   0.0340   0.5914* 
   [0.0925]   [0.3406] 
Age company   0.0027***   0.0208 
   [0.0005]   [0.0143] 
Constant  -0.1195 -0.1574** -3.0716 -3.2098 -3.3658 
  [0.0823] [0.0642] [5.1842] [2.6481] [5.3229] 
Test of joint significance       
Firm dummies Incl.*** Incl.*** Incl.*** Incl.*** Incl.*** Incl.*** 
Technology class  Incl.*** Incl.*** Incl.*** Incl.*** Incl.*** Incl.*** 

Application year Incl.*** Incl.*** Incl.*** Incl.** Incl.*** Incl. 
Censoring (at 0 or 1)    75% 75% 75% 
Heteroskedasticity test    12.87** 10.54** 12.77** 
Log PLH    -665.010 -661.229 -655.754 
Observations 1089 1089 1089 1089 1089 1089 
(Pseudo) R-squared 0.236 0.247 0.258 0.211 0.215 0.222 

 
All regressions include application year, firm and technology dummies, R5 is control group 

Robust standard errors in brackets, clustered by firm, heteroskedasticity term includes 4 scale class dummies 
*** p<0.01, ** p<0.05, * p<0.1 

Marginal Effects (6): BoundarySpanning-Affiliate 34%***, Citing-Affiliate 29%***, BoundarySpanning-Non-Affiliate -3% 
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TABLE 8: Citation Lag R0/R1 Cited 
 

 Citation lag  
 
 

  

 OLS 
 (1) (2) (3) (4) 

     
BOUNDARY SPANNING -3.2865* -3.2526* -3.2439** -0.4159 

AFFILIATE 
 

[1.7343] [1.7452] [1.3327] [2.0684] 

CITING-AFFILIATE -0.9157** -0.9289** -0.9276** 0.0540 
 
 
 

[0.4337] [0.4225] [0.4217] [1.4724] 

BOUNDARY SPANNING -1.2599** -1.2466** 0.3243 -0.8000 
NON-AFFILIATE [0.5937] [0.6075] [1.9060] [0.8325] 

Count inventors  0.0017 -0.0183 0.0329 
  [0.0731] [0.0725] [0.0496] 
Count core IPC  0.0609 0.0844 0.0159 
  [0.1306] [0.1276] [0.0955] 
NPRS  -0.0266 -0.0229 0.0017 
  [0.0290] [0.0292] [0.0259] 
PRS  -0.0273 -0.0332 -0.0284 
  [0.0354] [0.0355] [0.0319] 

Dummy same IPC   -1.4960*** -0.7453*** 
   [0.2512] [0.2370] 
Dummy same inventor   -1.9609 -0.0921 
   [2.1498] [0.8506] 
Dummy same applicant   4.6324** 1.6792 
   [2.1003] [2.0132] 
Constant 15.1701*** 15.2123*** 16.9086*** 13.9315 
 [2.4890] [2.5348] [2.5271] [11.4845] 

Test of joint significance     
Firm dummies    Incl.*** 
Technology class cited 

 
Incl.*** Incl.*** Incl.*** Incl.*** 

Technology class citing 
 

Incl.*** Incl.*** Incl.*** Incl.*** 
Application year cited 

 
Incl.*** Incl.*** Incl.*** Incl.*** 

Publication authority 
  

Incl.*** Incl.*** Incl.*** Incl.*** 

Observations 2667 2667 2667 2667 
R-squared 0.669 0.670 0.672 0.947 

 
All regressions include application year, patent authority and technology dummies, R5 is control group 

Robust standard errors in brackets, clustered by firm 
*** p<0.01, ** p<0.05, * p<0.1 
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TABLE 9: Matched Partner/Non-Partner Patents 
 

    
TTEST 

  
PARTNER 

(TREATED) 

NON-
PARTNER 

(NON-
TREATED) t P>|t| 

BOUNDARY SPANNING AFFILIATE vs 
BOUNDARY SPANNING NON-AFFILIATE 

Count forward cit 3y Unmatched 4.41 1.64 1.97 0.050 

 
Matched 4.41 1.55 4.02 0.000 

Dummy highly cited  Unmatched 0.15 0.07 1.44 0.152 

 
Matched 0.15 0.04 3.53 0.000 

Proportion self citations Unmatched 0.21 0.05 2.98 0.003 

 
Matched 0.21 0.30 -2.90 0.004 

BOUNDARY SPANNING AFFILIATE vs 
CITING NON-AFFILIATE 

Count forward cit 3y Unmatched 4.41 2.86 2.88 0.004 

 
Matched 4.41 0.72 5.13 0.000 

Dummy highly cited Unmatched 0.15 0.10 1.71 0.088 

 
Matched 0.15 0.02 4.30 0.000 

Proportion self citations Unmatched 0.21 0.13 2.96 0.003 

 
Matched 0.21 0.04 5.79 0.000 

CITING AFFILIATE vs 
BOUNDARY SPANNING NON-AFFILIATE 

Count forward cit 3y Unmatched 2.38 1.64 1.28 0.200 

 
Matched 2.38 2.67 -1.30 0.195 

Dummy highly cited Unmatched 0.09 0.07 0.61 0.542 

 
Matched 0.09 0.14 -1.92 0.056 

Proportion self citations Unmatched 0.20 0.05 2.95 0.003 

 
Matched 0.20 0.09 5.81 0.000 

CITING AFFILIATE vs 
CITING NON-AFFILIATE 

Count forward cit 3y Unmatched 2.38 2.86 -1.81 0.070 

 
Matched 2.38 2.00 1.67 0.095 

Dummy highly cited Unmatched 0.09 0.10 -0.25 0.801 

 
Matched 0.09 0.07 1.23 0.219 

Proportion self citations Unmatched 0.20 0.13 3.23 0.001 

 
Matched 0.20 0.12 4.13 0.000 
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